Dual‐Anion‐Dominated Electrolyte Design Manipulating Coordination and Boron‐Rich Interphase for Self‐Healing and Long‐Life Mg Metal Anode

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lu Zhang, Yuping Liu, Xiaolei Wang, Zhihong Cui, Jinming Pan, Jingfeng Wang, Guangsheng Huang, Dingfei Zhang, Chaohe Xu
{"title":"Dual‐Anion‐Dominated Electrolyte Design Manipulating Coordination and Boron‐Rich Interphase for Self‐Healing and Long‐Life Mg Metal Anode","authors":"Lu Zhang, Yuping Liu, Xiaolei Wang, Zhihong Cui, Jinming Pan, Jingfeng Wang, Guangsheng Huang, Dingfei Zhang, Chaohe Xu","doi":"10.1002/adfm.202520292","DOIUrl":null,"url":null,"abstract":"Practical magnesium electrolyte options are limited by magnesium salt solubility in organic solvents and compatibility with metallic magnesium anode/cathode materials. Herein, a dual‐anion electrolyte system (YBTFC) consisting of 0.2 <jats:sc>m</jats:sc> magnesium chloride (MgCl<jats:sub>2</jats:sub>) and 0.4 <jats:sc>m</jats:sc> dibutylboron trifluoromethanesulfonate (TFBA) in 1,2‐Dimethoxyethane (DME) solvent to regulate the coordination chemistry and the interface structure is proposed. As an anion receptor, TFBA facilitates Lewis‐acid‐base reactions that foster the dissociation of insoluble MgCl<jats:sub>2</jats:sub> and the formation of bi‐anions. The CF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> modulates the solvation sheath to reduce DME coordination strength and penetrates Mg passive films, enabling reversible plating. Concurrently, the bulky B(CF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub>)<jats:sub>4</jats:sub><jats:sup>−</jats:sup> preferentially decomposes into boron‐rich interphases, enhancing Mg<jats:sup>2</jats:sup>⁺ transport kinetics while suppressing contact ion pair formation to extend operational temperature range. This combination of exceptional durability, low‐temperature operation (−30 °C), and inherent interfacial self‐healing is rarely observed in boron‐based electrolytes. Critically, the boron‐rich nature of YBTFC electrolyte facilitates B‐O interphase formation on both electrode interfaces. Accordingly, the Mg|YBTFC|Mo<jats:sub>6</jats:sub>S<jats:sub>8</jats:sub> cell achieves a discharge specific capacity of 50 mAh g<jats:sup>−1</jats:sup> and outstanding cycling stability of 4500 cycles at a 3C rate. Overall, tailoring Mg<jats:sup>2+</jats:sup> coordination chemistry and constructing a boron‐rich interphase via a dual‐anion electrolyte provides a viable approach for realizing long‐life, high‐rate‐performance magnesium batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"50 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202520292","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Practical magnesium electrolyte options are limited by magnesium salt solubility in organic solvents and compatibility with metallic magnesium anode/cathode materials. Herein, a dual‐anion electrolyte system (YBTFC) consisting of 0.2 m magnesium chloride (MgCl2) and 0.4 m dibutylboron trifluoromethanesulfonate (TFBA) in 1,2‐Dimethoxyethane (DME) solvent to regulate the coordination chemistry and the interface structure is proposed. As an anion receptor, TFBA facilitates Lewis‐acid‐base reactions that foster the dissociation of insoluble MgCl2 and the formation of bi‐anions. The CF3SO3 modulates the solvation sheath to reduce DME coordination strength and penetrates Mg passive films, enabling reversible plating. Concurrently, the bulky B(CF3SO3)4 preferentially decomposes into boron‐rich interphases, enhancing Mg2⁺ transport kinetics while suppressing contact ion pair formation to extend operational temperature range. This combination of exceptional durability, low‐temperature operation (−30 °C), and inherent interfacial self‐healing is rarely observed in boron‐based electrolytes. Critically, the boron‐rich nature of YBTFC electrolyte facilitates B‐O interphase formation on both electrode interfaces. Accordingly, the Mg|YBTFC|Mo6S8 cell achieves a discharge specific capacity of 50 mAh g−1 and outstanding cycling stability of 4500 cycles at a 3C rate. Overall, tailoring Mg2+ coordination chemistry and constructing a boron‐rich interphase via a dual‐anion electrolyte provides a viable approach for realizing long‐life, high‐rate‐performance magnesium batteries.
双阴离子主导的电解质设计操纵配位和富硼界面,用于自愈合和长寿命镁金属阳极
实用的镁电解质选择受到镁盐在有机溶剂中的溶解度和与金属镁阳极/阴极材料的兼容性的限制。本文提出了一种由0.2 m氯化镁(MgCl2)和0.4 m二丁基硼三氟甲烷磺酸盐(TFBA)在1,2 -二甲氧基乙烷(DME)溶剂中组成的双阴离子电解质体系(YBTFC)来调节配位化学和界面结构。作为阴离子受体,TFBA促进Lewis酸碱反应,促进不溶性MgCl2的解离和双阴离子的形成。CF3SO3−调节溶剂化鞘层,降低二甲醚配位强度,穿透Mg钝化膜,实现可逆电镀。同时,体积较大的B(CF3SO3)4−优先分解成富硼界面,增强了Mg2 +的传输动力学,同时抑制了接触离子对的形成,延长了操作温度范围。这种优异的耐久性、低温操作(- 30°C)和固有界面自愈的组合在硼基电解质中很少观察到。关键是,YBTFC电解质的富硼性质促进了两个电极界面上B - O界面相的形成。因此,Mg|YBTFC|Mo6S8电池实现了50 mAh g - 1的放电比容量和出色的循环稳定性,在3C速率下循环4500次。总之,调整Mg2+配位化学和通过双阴离子电解质构建富硼间相为实现长寿命、高倍率性能的镁电池提供了可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信