A light-governed cascade of ubiquitin modifications regulates cotton fiber development by coordinating PIN3a proteolysis.

Liuqin Zhang,Yanling Zhou,Xingxian Fu,Changzheng Xu,Lina Liu,Xinyue Du,Yahong An,Mingxuan Xu,Liman Mu,Qingqing Li,Jinyu Cui,Lei Hou,Yan Pei,Mi Zhang
{"title":"A light-governed cascade of ubiquitin modifications regulates cotton fiber development by coordinating PIN3a proteolysis.","authors":"Liuqin Zhang,Yanling Zhou,Xingxian Fu,Changzheng Xu,Lina Liu,Xinyue Du,Yahong An,Mingxuan Xu,Liman Mu,Qingqing Li,Jinyu Cui,Lei Hou,Yan Pei,Mi Zhang","doi":"10.1093/plcell/koaf237","DOIUrl":null,"url":null,"abstract":"PIN-mediated auxin transport is crucial for light-regulated plant organogenesis; however, how light modulates PIN localization remains elusive. Cotton (Gossypium hirsutum), a key textile crop, requires ample sunlight for optimal growth and fiber development. Yet, the mechanism underlying light-regulated fiber development is obscure. Our research shows that light promotes fiber initiation and elongation through inhibiting ubiquitylation degradation of GhPIN3a and subsequently enhancing GhPIN3a plasma-membrane localization. In fiber cells, where GhPIN3a undergoes preferential ubiquitylation, GhCOP1 was identified to control ubiquitylation degradation of GhPIN3a in response to light. Dark-stabilized GhCOP1 targets GhUCH3, which interacts with GhPIN3a to balance its stability through deubiquitylation. This regulatory cascade converts light signals into developmental cues in cotton fibers. Intriguingly, while GhCOP1 promotes GhUCH3 degradation via the ubiquitin-proteasome system (UPS), GhUCH3 modulates GhPIN3a proteolysis through both the UPS and the vacuolar degradation pathway. Our findings reveal a light-regulated GhPIN3a stability mechanism through the GhCOP1-GhUCH3 module, consequently influencing cotton fiber development.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PIN-mediated auxin transport is crucial for light-regulated plant organogenesis; however, how light modulates PIN localization remains elusive. Cotton (Gossypium hirsutum), a key textile crop, requires ample sunlight for optimal growth and fiber development. Yet, the mechanism underlying light-regulated fiber development is obscure. Our research shows that light promotes fiber initiation and elongation through inhibiting ubiquitylation degradation of GhPIN3a and subsequently enhancing GhPIN3a plasma-membrane localization. In fiber cells, where GhPIN3a undergoes preferential ubiquitylation, GhCOP1 was identified to control ubiquitylation degradation of GhPIN3a in response to light. Dark-stabilized GhCOP1 targets GhUCH3, which interacts with GhPIN3a to balance its stability through deubiquitylation. This regulatory cascade converts light signals into developmental cues in cotton fibers. Intriguingly, while GhCOP1 promotes GhUCH3 degradation via the ubiquitin-proteasome system (UPS), GhUCH3 modulates GhPIN3a proteolysis through both the UPS and the vacuolar degradation pathway. Our findings reveal a light-regulated GhPIN3a stability mechanism through the GhCOP1-GhUCH3 module, consequently influencing cotton fiber development.
pin介导的生长素运输对光调控植物器官发生至关重要然而,光如何调制PIN定位仍然难以捉摸。棉花是一种重要的纺织作物,需要充足的阳光才能实现最佳生长和纤维发育。然而,光调节纤维发育的机制尚不清楚。我们的研究表明,光通过抑制GhPIN3a的泛素化降解,从而增强GhPIN3a的质膜定位,从而促进纤维的起始和延伸。在纤维细胞中,GhPIN3a经历优先泛素化,GhCOP1被鉴定为控制GhPIN3a响应于光的泛素化降解。暗稳定的GhCOP1靶向GhUCH3, GhUCH3与GhPIN3a相互作用,通过去泛素化平衡GhPIN3a的稳定性。这种调节级联将光信号转化为棉纤维的发育线索。有趣的是,GhCOP1通过泛素-蛋白酶体系统(UPS)促进GhUCH3降解,而GhUCH3通过UPS和液泡降解途径调节GhPIN3a蛋白水解。我们的研究结果揭示了通过GhCOP1-GhUCH3模块光调控的GhPIN3a稳定性机制,从而影响棉纤维的发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信