Identifying the Secondary Jet in the RadioAstron Image of OJ 287

Mauri J. Valtonen, Lankeswar Dey, Staszek Zola, Alok C. Gupta, Shubham Kishore, Achamveedu Gopakumar, Paul J. Wiita, Minfeng Gu, Kari Nilsson, Zhongli Zhang, Rene Hudec, Katsura Matsumoto, Marek Drozdz, Waldemar Ogloza, Andrei V. Berdyugin, Daniel E. Reichart, Markus Mugrauer, Tapio Pursimo, Stefano Ciprini, Tatsuya Nakaoka, Makoto Uemura, Ryo Imazawa, Michal Zejmo, Vladimir V. Kouprianov, James W. Davidson, Alberto Sadun, Jan Štrobl, Martin Jelínek and Abhimanyu Susobhanan
{"title":"Identifying the Secondary Jet in the RadioAstron Image of OJ 287","authors":"Mauri J. Valtonen, Lankeswar Dey, Staszek Zola, Alok C. Gupta, Shubham Kishore, Achamveedu Gopakumar, Paul J. Wiita, Minfeng Gu, Kari Nilsson, Zhongli Zhang, Rene Hudec, Katsura Matsumoto, Marek Drozdz, Waldemar Ogloza, Andrei V. Berdyugin, Daniel E. Reichart, Markus Mugrauer, Tapio Pursimo, Stefano Ciprini, Tatsuya Nakaoka, Makoto Uemura, Ryo Imazawa, Michal Zejmo, Vladimir V. Kouprianov, James W. Davidson, Alberto Sadun, Jan Štrobl, Martin Jelínek and Abhimanyu Susobhanan","doi":"10.3847/1538-4357/ae057e","DOIUrl":null,"url":null,"abstract":"The 136 yr long optical light curve of OJ 287 is explained by a binary black hole model where the secondary is in a 12 yr orbit around the primary. Impacts of the secondary on the accretion disk of the primary generate a series of optical flares that follow a quasi-Keplerian relativistic mathematical model. The orientation of the binary in space is determined from the behavior of the primary jet. Here, we ask how the jet of the secondary black hole projects onto the sky plane. Assuming that the jet is initially perpendicular to the disk, and that it is ballistic, we follow its evolution after the Lorentz transformation to the observer’s frame. Since the orbital speed of the secondary is of the order of one-tenth of the speed of light, the result is a change in the jet direction by more than a radian during an orbital cycle. We match the theoretical jet line with the recent 12 μas resolution RadioAstron map of OJ 287 and determine the only free parameter of the problem, the apparent speed of the jet relative to speed of light. It turns out that the Doppler factor of the jet, δ ∼ 5, is much lower than in the primary jet. Besides following a unique shape of the jet path, the secondary jet is also distinguished by a different spectral shape than in the primary jet. The present result on the spectral shape agrees with the huge optical flare of 2021 November 12, also arising from the secondary jet.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ae057e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 136 yr long optical light curve of OJ 287 is explained by a binary black hole model where the secondary is in a 12 yr orbit around the primary. Impacts of the secondary on the accretion disk of the primary generate a series of optical flares that follow a quasi-Keplerian relativistic mathematical model. The orientation of the binary in space is determined from the behavior of the primary jet. Here, we ask how the jet of the secondary black hole projects onto the sky plane. Assuming that the jet is initially perpendicular to the disk, and that it is ballistic, we follow its evolution after the Lorentz transformation to the observer’s frame. Since the orbital speed of the secondary is of the order of one-tenth of the speed of light, the result is a change in the jet direction by more than a radian during an orbital cycle. We match the theoretical jet line with the recent 12 μas resolution RadioAstron map of OJ 287 and determine the only free parameter of the problem, the apparent speed of the jet relative to speed of light. It turns out that the Doppler factor of the jet, δ ∼ 5, is much lower than in the primary jet. Besides following a unique shape of the jet path, the secondary jet is also distinguished by a different spectral shape than in the primary jet. The present result on the spectral shape agrees with the huge optical flare of 2021 November 12, also arising from the secondary jet.
在oj287射电天文学家图像中识别副喷流
oj287长达136年的光学光曲线可以用一个双黑洞模型来解释,其中副黑洞围绕主黑洞运行12年的轨道。次级星系对主星系吸积盘的影响会产生一系列光学耀斑,这些耀斑遵循准开普勒相对论数学模型。双星在空间中的方向由主喷流的行为决定。这里,我们问的是次级黑洞的喷流是如何投射到空中飞机上的。假设喷流最初垂直于圆盘,并且它是弹道的,我们跟踪它在洛伦兹变换到观察者坐标系后的演变。由于次级行星的轨道速度大约是光速的十分之一,因此在一个轨道周期内,射流方向的变化超过了弧度。我们将理论射流线与oj287最近的12 μas分辨率RadioAstron图进行匹配,并确定了问题的唯一自由参数,即射流相对于光速的视速度。结果表明,该喷流的多普勒系数δ ~ 5远低于原喷流。除了遵循独特的喷流路径外,副喷流的光谱形状也与主喷流不同。目前光谱形状的结果与2021年11月12日的巨大光学耀斑一致,也是由次喷流引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信