Spectral Properties of Globally Distributed ENA Fluxes across Diverse Regions of the Heliosphere

Thomas K. Kim, Daniel B. Reisenfeld, Eric J. Zirnstein, Paul H. Janzen, Asher S. Merrill, Sung Jun Noh, Nehpreet K. Walia, Yue Chen, Fan Guo, Dave Osthus, Lauren J. Beesley, Dae-Kyu Shin, Justyna M. Sokół, Maciej Bzowski, Marzena A. Kubiak, Czeslaw Porowski and Herbert O. Funsten
{"title":"Spectral Properties of Globally Distributed ENA Fluxes across Diverse Regions of the Heliosphere","authors":"Thomas K. Kim, Daniel B. Reisenfeld, Eric J. Zirnstein, Paul H. Janzen, Asher S. Merrill, Sung Jun Noh, Nehpreet K. Walia, Yue Chen, Fan Guo, Dave Osthus, Lauren J. Beesley, Dae-Kyu Shin, Justyna M. Sokół, Maciej Bzowski, Marzena A. Kubiak, Czeslaw Porowski and Herbert O. Funsten","doi":"10.3847/1538-4357/ae0183","DOIUrl":null,"url":null,"abstract":"This study analyzes energetic neutral atom (ENA) spectral properties across distinct regions of globally distributed flux (GDF) sky maps, using Interstellar Boundary Explorer data from a full solar cycle, corrected for time dispersion. By time-shifting the data to the heliosheath using GDF source distances from D. B. Reisenfeld et al., we achieve a more accurate representation of heliosheath GDF energy spectra. We quantify ENA spectral characteristics, heliosheath line-of-sight-integrated proton pressure, and heliosheath proton temperature, comparing these to solar wind properties at 1 au and interplanetary scintillation-derived solar wind data. Our findings show that the spectral index is generally anticorrelated with heliosheath proton temperature and pressure, except in the central tail, where a partial positive correlation is observed. The lowest spectral index values occur when high-latitude heliosheath regions are dominated by fast solar wind from polar coronal holes. The south pole exhibits the flattest energy spectra due to plasma heating from both fast solar wind and a late-2014 pressure pulse. The central tail shows shorter variability (5–6 yr) for spectral index and heliosheath proton temperature, while proton pressure follows the 11 yr solar cycle. Most spectral shapes exhibit a “knee” distribution, peaking during solar maximum, with an “ankle” shape observed only at the south pole during solar cycle transitions. Asymmetry in proton pressure in the lobes is driven by the draping effect of the local interstellar magnetic field. This study provides insights into the energetic properties of GDF across the heliosphere, enhancing our understanding of the heliospheric environment.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ae0183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzes energetic neutral atom (ENA) spectral properties across distinct regions of globally distributed flux (GDF) sky maps, using Interstellar Boundary Explorer data from a full solar cycle, corrected for time dispersion. By time-shifting the data to the heliosheath using GDF source distances from D. B. Reisenfeld et al., we achieve a more accurate representation of heliosheath GDF energy spectra. We quantify ENA spectral characteristics, heliosheath line-of-sight-integrated proton pressure, and heliosheath proton temperature, comparing these to solar wind properties at 1 au and interplanetary scintillation-derived solar wind data. Our findings show that the spectral index is generally anticorrelated with heliosheath proton temperature and pressure, except in the central tail, where a partial positive correlation is observed. The lowest spectral index values occur when high-latitude heliosheath regions are dominated by fast solar wind from polar coronal holes. The south pole exhibits the flattest energy spectra due to plasma heating from both fast solar wind and a late-2014 pressure pulse. The central tail shows shorter variability (5–6 yr) for spectral index and heliosheath proton temperature, while proton pressure follows the 11 yr solar cycle. Most spectral shapes exhibit a “knee” distribution, peaking during solar maximum, with an “ankle” shape observed only at the south pole during solar cycle transitions. Asymmetry in proton pressure in the lobes is driven by the draping effect of the local interstellar magnetic field. This study provides insights into the energetic properties of GDF across the heliosphere, enhancing our understanding of the heliospheric environment.
日球层不同区域全球分布的ENA通量的光谱特性
本研究分析了全球分布通量(GDF)天空图中不同区域的高能中性原子(ENA)光谱特性,使用了星际边界探测器从一个完整太阳周期获得的数据,并对时间色散进行了校正。通过使用d.b. Reisenfeld等人的GDF源距离将数据时移到日鞘,我们获得了更准确的日鞘GDF能谱表示。我们量化了ENA的光谱特征、日鞘视距积分质子压力和日鞘质子温度,并将这些数据与1au的太阳风特性和行星际闪烁衍生的太阳风数据进行了比较。我们的研究结果表明,光谱指数通常与日鞘质子温度和压力呈反相关,除了在中央尾部观察到部分正相关。当高纬度日鞘区被来自极日冕洞的快速太阳风主导时,光谱指数值最低。由于快速太阳风和2014年末压力脉冲的等离子体加热,南极呈现出最平坦的能谱。中央尾部的光谱指数和日鞘质子温度变化较短(5-6年),而质子压力则遵循11年的太阳周期。大多数光谱形状呈现“膝盖”分布,在太阳活动极大期达到峰值,只有在太阳活动周期过渡期间在南极观测到“脚踝”形状。叶状星云中质子压力的不对称是由局地星际磁场的悬垂效应造成的。这项研究提供了对整个日球层GDF能量特性的见解,增强了我们对日球层环境的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信