{"title":"Cryo-EM structure of the yeast Saccharomyces cerevisiae SDH provides a template for eco-friendly fungicide discovery.","authors":"Zhi-Wen Li,Yuan-Hui Huang,Ge Wei,Zong-Wei Lu,Yu-Xia Wang,Guang-Rui Cui,Jun-Ya Wang,Xin-He Yu,Yi-Xuan Fu,Er-Di Fan,Qiong-You Wu,Xiao-Lei Zhu,Ying Ye,Guang-Fu Yang","doi":"10.1038/s41467-025-64001-0","DOIUrl":null,"url":null,"abstract":"Succinate dehydrogenase (SDH) is a key fungicidal target, but rational inhibitors design has been impeded by the lack of fungal SDH structure. Here, we show the cryo-EM structure of SDH from Saccharomyces cerevisiae (ScSDH) in apo (3.36 Å) and ubiquinone-1-bound (3.25 Å) states, revealing subunits architecture and quinone-binding sites (Qp). ScSDH is classified as a heme-deficient type-D SDH, utilizing conserved redox centers (FAD, [2Fe-2S], [4Fe-4S] and [3Fe-4S] clusters) for electron transfer. A 3.23 Å structure with pydiflumetofen (PYD) identified critical interactions, including hydrogen bonds with Trp_SDHB194 and Tyr_SDHD120, and a cation-π interaction with Arg_SDHC97. Leveraging this, we designed a SDH inhibitor E8 (enprocymid), exhibiting significant fungicidal activity (Ki = 0.019 μM) and reduced zebrafish toxicity (LC50 (96 h) = 1.01 mg a.i./L). This study elucidates the structure of fungal SDH and demonstrates the potential of ScSDH for rational design of next-generation fungicides, addressing fungal resistance and environmental toxicity in agriculture.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"5087 1 1","pages":"8936"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64001-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Succinate dehydrogenase (SDH) is a key fungicidal target, but rational inhibitors design has been impeded by the lack of fungal SDH structure. Here, we show the cryo-EM structure of SDH from Saccharomyces cerevisiae (ScSDH) in apo (3.36 Å) and ubiquinone-1-bound (3.25 Å) states, revealing subunits architecture and quinone-binding sites (Qp). ScSDH is classified as a heme-deficient type-D SDH, utilizing conserved redox centers (FAD, [2Fe-2S], [4Fe-4S] and [3Fe-4S] clusters) for electron transfer. A 3.23 Å structure with pydiflumetofen (PYD) identified critical interactions, including hydrogen bonds with Trp_SDHB194 and Tyr_SDHD120, and a cation-π interaction with Arg_SDHC97. Leveraging this, we designed a SDH inhibitor E8 (enprocymid), exhibiting significant fungicidal activity (Ki = 0.019 μM) and reduced zebrafish toxicity (LC50 (96 h) = 1.01 mg a.i./L). This study elucidates the structure of fungal SDH and demonstrates the potential of ScSDH for rational design of next-generation fungicides, addressing fungal resistance and environmental toxicity in agriculture.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.