Stress-Dissipating Cocontinuous Carbon–Silicon Microparticles for High-Energy Lithium-Ion Batteries with Low Expansions

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yiteng Luo, , , Dongsheng Yang, , , Zidong Chen, , , Lei Wang, , , Bo Xu, , , Guangmin Zhou*, , and , Wei Liu*, 
{"title":"Stress-Dissipating Cocontinuous Carbon–Silicon Microparticles for High-Energy Lithium-Ion Batteries with Low Expansions","authors":"Yiteng Luo,&nbsp;, ,&nbsp;Dongsheng Yang,&nbsp;, ,&nbsp;Zidong Chen,&nbsp;, ,&nbsp;Lei Wang,&nbsp;, ,&nbsp;Bo Xu,&nbsp;, ,&nbsp;Guangmin Zhou*,&nbsp;, and ,&nbsp;Wei Liu*,&nbsp;","doi":"10.1021/acs.nanolett.5c03322","DOIUrl":null,"url":null,"abstract":"<p >Large lithiation-induced expansion impedes the application of silicon anodes in lithium-ion batteries (LIBs). Although porous particles alleviate expansion, increasing structural fragility and specific surface area (SSA) negate cell performance. Here, we report structurally robust, low-SSA (5.2 m<sup>2</sup>/g) microparticles with cocontinuous carbon–silicon architecture (C–CSi). This design features a 3D interpenetrating nanosilicon and porous carbon network, encapsulated within micrometer-sized particles. As opposed to conventional carbon–silicon microparticles with discrete Si distribution, the continuous structure disperses lithiation stress and facilitates intraparticle Li diffusion, enabling high initial Coulombic efficiency (88.4%), and large calendaring compatibility (&gt;1.4 g/cm<sup>3</sup>). Particle-specific tracking, finite element simulations, and operando Raman spectroscopy reveal stress dissipation and electrolyte isolation. The C–CSi/graphite || NCM811 pouch cells (4 mAh/cm<sup>2</sup>) showed &gt;80% capacity over 300 cycles with minimal expansion comparable to graphite, and the stacked pouch cells achieve 330 Wh/kg. This work presents a novel carbon–silicon architecture for high-energy LIBs with minimized expansion.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 42","pages":"15231–15239"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03322","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Large lithiation-induced expansion impedes the application of silicon anodes in lithium-ion batteries (LIBs). Although porous particles alleviate expansion, increasing structural fragility and specific surface area (SSA) negate cell performance. Here, we report structurally robust, low-SSA (5.2 m2/g) microparticles with cocontinuous carbon–silicon architecture (C–CSi). This design features a 3D interpenetrating nanosilicon and porous carbon network, encapsulated within micrometer-sized particles. As opposed to conventional carbon–silicon microparticles with discrete Si distribution, the continuous structure disperses lithiation stress and facilitates intraparticle Li diffusion, enabling high initial Coulombic efficiency (88.4%), and large calendaring compatibility (>1.4 g/cm3). Particle-specific tracking, finite element simulations, and operando Raman spectroscopy reveal stress dissipation and electrolyte isolation. The C–CSi/graphite || NCM811 pouch cells (4 mAh/cm2) showed >80% capacity over 300 cycles with minimal expansion comparable to graphite, and the stacked pouch cells achieve 330 Wh/kg. This work presents a novel carbon–silicon architecture for high-energy LIBs with minimized expansion.

低膨胀高能锂离子电池的应力耗散共连续碳硅微粒。
硅阳极在锂离子电池(LIBs)中的应用受到较大的锂化膨胀的阻碍。虽然多孔颗粒可以缓解膨胀,但增加结构脆弱性和比表面积(SSA)会影响电池的性能。在这里,我们报告了结构坚固,低ssa (5.2 m2/g)的共连续碳硅结构(C-CSi)微粒。这个设计的特点是一个三维互穿的纳米硅和多孔碳网络,被封装在微米大小的颗粒中。与Si离散分布的传统碳硅微颗粒不同,连续结构分散了锂化应力,促进了颗粒内Li的扩散,具有较高的初始库仑效率(88.4%)和较大的压延相容性(>1.4 g/cm3)。粒子特异性跟踪,有限元模拟和operando拉曼光谱揭示应力耗散和电解质隔离。C-CSi/石墨|| NCM811袋状电池(4 mAh/cm2)在300次循环中表现出bbb80 %的容量,膨胀最小,与石墨相当,堆叠袋状电池达到330 Wh/kg。这项工作提出了一种新型的碳硅结构,用于最小化膨胀的高能lib。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信