A concurrently optimization of H and OH binding energies in atomically Ni anchored Ru/RuO2 nanosheet driving high CO-tolerant hydrogen oxidation catalysis.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Liangbin Liu,Lujie Jin,Renjie Ren,Wei Yan,Nan Fang,Yujin Ji,Youyong Li,Lin Zhuang,Qingyu Kong,Zhiwei Hu,Qi Shao,Xiaoqing Huang
{"title":"A concurrently optimization of H and OH binding energies in atomically Ni anchored Ru/RuO2 nanosheet driving high CO-tolerant hydrogen oxidation catalysis.","authors":"Liangbin Liu,Lujie Jin,Renjie Ren,Wei Yan,Nan Fang,Yujin Ji,Youyong Li,Lin Zhuang,Qingyu Kong,Zhiwei Hu,Qi Shao,Xiaoqing Huang","doi":"10.1038/s41467-025-63998-8","DOIUrl":null,"url":null,"abstract":"The development of highly active and CO-tolerant hydrogen oxidation reaction (HOR) electrocatalysts is of great significance for alkaline exchange membrane fuel cells (AEMFCs). Here, the designed atomically Ni anchored Ru/RuO2 heterostructure nanosheets (NiSA-Ru@RuO2 NSs/C) exhibit enhanced activity and stability for HOR in alkaline media. The optimized electrocatalyst delivers a high CO-tolerant durability with 92.3% retention in the 1000 ppm CO concentration after 5000 s test. Moreover, the anode catalyst NiSA-Ru@RuO2 NSs/C assembled AEMFCs output a peak power density (PPD) and specific PPD of 1.76 W cm-2 and 17.6 W mgPGM-1 under the H2/O2 condition and performed a long-term stability with negligible decay for 100 h at 0.5 A cm-2 for the AEMFCs. The relative mechanism studies reveal that the Ru/RuO2 heterostructure nanosheet and dispersed Ni single atoms have optimized the *H and *OH adsorption simultaneously and weaken the *CO adsorption. Our work may offer a significant guideline on the rational design of high-performance HOR electrocatalyst for energy-related applications.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":"8951"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63998-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of highly active and CO-tolerant hydrogen oxidation reaction (HOR) electrocatalysts is of great significance for alkaline exchange membrane fuel cells (AEMFCs). Here, the designed atomically Ni anchored Ru/RuO2 heterostructure nanosheets (NiSA-Ru@RuO2 NSs/C) exhibit enhanced activity and stability for HOR in alkaline media. The optimized electrocatalyst delivers a high CO-tolerant durability with 92.3% retention in the 1000 ppm CO concentration after 5000 s test. Moreover, the anode catalyst NiSA-Ru@RuO2 NSs/C assembled AEMFCs output a peak power density (PPD) and specific PPD of 1.76 W cm-2 and 17.6 W mgPGM-1 under the H2/O2 condition and performed a long-term stability with negligible decay for 100 h at 0.5 A cm-2 for the AEMFCs. The relative mechanism studies reveal that the Ru/RuO2 heterostructure nanosheet and dispersed Ni single atoms have optimized the *H and *OH adsorption simultaneously and weaken the *CO adsorption. Our work may offer a significant guideline on the rational design of high-performance HOR electrocatalyst for energy-related applications.
原子Ni锚定Ru/RuO2纳米片中H和OH结合能的同时优化驱动高co耐受性的氢氧化催化。
开发高活性、耐co的氢氧化反应(HOR)电催化剂对碱性交换膜燃料电池(aemfc)具有重要意义。在这里,设计的原子Ni锚定Ru/RuO2异质结构纳米片(NiSA-Ru@RuO2 NSs/C)在碱性介质中表现出增强的HOR活性和稳定性。经过优化的电催化剂提供了高CO耐受性耐久性,在1000 ppm的CO浓度下,经过5000 s的测试,保留率为92.3%。此外,阳极催化剂NiSA-Ru@RuO2 NSs/C组装的aemfc在H2/O2条件下输出的峰值功率密度(PPD)和比功率密度(PPD)分别为1.76 W cm-2和17.6 W mgPGM-1,并且在0.5 a cm-2条件下,aemfc具有100 h的长期稳定性,衰减可以忽略。相关机理研究表明,Ru/RuO2异质结构纳米片和分散的Ni单原子同时优化了*H和*OH的吸附,减弱了*CO的吸附。我们的工作为合理设计高性能HOR电催化剂提供了重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信