An AI-assisted multiplex fluorescence sensing platform for grading diagnosis of Alzheimer's disease.

IF 5.7
Yibiao Liu, Zhongzeng Zhou, Xingyun Liu, Jian Zeng, Qiong Liu, Tailin Xu
{"title":"An AI-assisted multiplex fluorescence sensing platform for grading diagnosis of Alzheimer's disease.","authors":"Yibiao Liu, Zhongzeng Zhou, Xingyun Liu, Jian Zeng, Qiong Liu, Tailin Xu","doi":"10.1039/d5tb01103e","DOIUrl":null,"url":null,"abstract":"<p><p>Blood-based biomarkers have become increasingly important for Alzheimer's disease (AD) diagnosis. However, due to individual variations, diagnostic accuracy using a single blood biomarker remains low, making it challenging to implement in large-scale AD screening efforts. Herein, we developed a multiplex fluorescent sensing platform for simultaneously measuring Aβ40, Aβ42, and P-tau181 in the blood, and constructed an artificial intelligence (AI) model. These three biomarkers were analyzed in 60 clinical samples: 15 healthy control, 15 subjective cognitive decline, 15 mild cognitive impairment, and 15 AD samples. The AI model based on these three biomarkers exhibited high predictive accuracy (91%), high positive predictive value (PPV) and low false rate (8.8%). The diagnostic accuracy and PPV of the AI model exceeded 90% for AD grading diagnosis in clinical samples. This study introduces a promising strategy for disease diagnosis and grading based on multi-biomarker analysis.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb01103e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Blood-based biomarkers have become increasingly important for Alzheimer's disease (AD) diagnosis. However, due to individual variations, diagnostic accuracy using a single blood biomarker remains low, making it challenging to implement in large-scale AD screening efforts. Herein, we developed a multiplex fluorescent sensing platform for simultaneously measuring Aβ40, Aβ42, and P-tau181 in the blood, and constructed an artificial intelligence (AI) model. These three biomarkers were analyzed in 60 clinical samples: 15 healthy control, 15 subjective cognitive decline, 15 mild cognitive impairment, and 15 AD samples. The AI model based on these three biomarkers exhibited high predictive accuracy (91%), high positive predictive value (PPV) and low false rate (8.8%). The diagnostic accuracy and PPV of the AI model exceeded 90% for AD grading diagnosis in clinical samples. This study introduces a promising strategy for disease diagnosis and grading based on multi-biomarker analysis.

用于阿尔茨海默病分级诊断的人工智能辅助多重荧光传感平台。
基于血液的生物标志物对阿尔茨海默病(AD)的诊断越来越重要。然而,由于个体差异,使用单一血液生物标志物的诊断准确性仍然很低,这使得在大规模AD筛查工作中实施具有挑战性。为此,我们建立了同时检测血液中a β40、a β42和P-tau181的多重荧光传感平台,并构建了人工智能(AI)模型。在60个临床样本中分析了这三种生物标志物:15个健康对照,15个主观认知能力下降,15个轻度认知障碍和15个AD样本。基于这三种生物标志物的人工智能模型具有高预测准确率(91%)、高阳性预测值(PPV)和低错误率(8.8%)的特点。AI模型对临床样本AD分级诊断的诊断准确率和PPV均超过90%。本研究介绍了一种基于多生物标志物分析的疾病诊断和分级的有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信