Leveraging attention-based deep multiple instance and multiple task learning for improved neoepitope identification.

IF 7.7
Wei Qu, Shanfeng Zhu
{"title":"Leveraging attention-based deep multiple instance and multiple task learning for improved neoepitope identification.","authors":"Wei Qu, Shanfeng Zhu","doi":"10.1016/j.cels.2025.101404","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of major histocompatibility complex class I (MHC class I) neoepitopes is crucial for personalized cancer immunotherapy. Current methods struggle with predicting ligand presentation for multiple alleles and identifying neoepitopes. We introduce NeoMHCI, a deep learning model that combines attention-based multiple instance learning (MIL) and multi-task learning for precise MHC class I neoepitope identification. NeoMHCI uses MIL to generate high-quality peptide embeddings with multiple MHC class I molecules and enhances immunogenicity prioritization through fine-tuning. Analyses on benchmark datasets show NeoMHCI outperforms existing methods, achieving an area under the receiver operating characteristic curve of 0.948 and an area under the precision-recall curve of 0.496 on unobserved multi-allele ligand presentation prediction and the highest top-5 accuracy (42.3%) for neoepitope recognition, indicating potential for personalized vaccines and therapies. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101404"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of major histocompatibility complex class I (MHC class I) neoepitopes is crucial for personalized cancer immunotherapy. Current methods struggle with predicting ligand presentation for multiple alleles and identifying neoepitopes. We introduce NeoMHCI, a deep learning model that combines attention-based multiple instance learning (MIL) and multi-task learning for precise MHC class I neoepitope identification. NeoMHCI uses MIL to generate high-quality peptide embeddings with multiple MHC class I molecules and enhances immunogenicity prioritization through fine-tuning. Analyses on benchmark datasets show NeoMHCI outperforms existing methods, achieving an area under the receiver operating characteristic curve of 0.948 and an area under the precision-recall curve of 0.496 on unobserved multi-allele ligand presentation prediction and the highest top-5 accuracy (42.3%) for neoepitope recognition, indicating potential for personalized vaccines and therapies. A record of this paper's transparent peer review process is included in the supplemental information.

利用基于注意力的深度多实例和多任务学习改进新表位识别。
准确预测主要组织相容性复合体I类(MHC I类)新表位对于个性化癌症免疫治疗至关重要。目前的方法难以预测多个等位基因的配体呈现和识别新表位。我们介绍了NeoMHCI,这是一种深度学习模型,结合了基于注意力的多实例学习(MIL)和多任务学习,用于MHCI类新表位的精确识别。NeoMHCI使用MIL生成含有多个MHCI类分子的高质量肽包埋,并通过微调提高免疫原性优先级。对基准数据集的分析表明,NeoMHCI优于现有方法,对未观察到的多等位基因配体呈现预测的受试者工作特征曲线下面积为0.948,精度-召回曲线下面积为0.496,新表位识别的前5名准确率最高(42.3%),表明了个性化疫苗和治疗的潜力。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信