LLM-led vision-spectral fusion: A zero-shot approach to temporal fruit image classification.

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huyu Wu, Bowen Jia, Xue-Ming Yuan
{"title":"LLM-led vision-spectral fusion: A zero-shot approach to temporal fruit image classification.","authors":"Huyu Wu, Bowen Jia, Xue-Ming Yuan","doi":"10.1016/j.neunet.2025.108155","DOIUrl":null,"url":null,"abstract":"<p><p>A zero-shot multimodal framework for temporal image classification is proposed, targeting automated fruit quality assessment. The approach leverages large language models for expert-level semantic description generation, which guides zero-shot object detection and segmentation through GLIP and SAM models. Visual features and spectral data are fused to capture both external appearance and internal biochemical properties of fruits. Experiments on the newly constructed Avocado Freshness Temporal-Spectral dataset-comprising daily synchronized images and spectral measurements across the full spoilage lifecycle-demonstrate reductions in mean squared error by up to 33 % and mean absolute error by up to 17 % compared to established baselines. These results validate the effectiveness and generalizability of the framework for temporal image analysis in smart agriculture and food quality monitoring.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"108155"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.108155","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A zero-shot multimodal framework for temporal image classification is proposed, targeting automated fruit quality assessment. The approach leverages large language models for expert-level semantic description generation, which guides zero-shot object detection and segmentation through GLIP and SAM models. Visual features and spectral data are fused to capture both external appearance and internal biochemical properties of fruits. Experiments on the newly constructed Avocado Freshness Temporal-Spectral dataset-comprising daily synchronized images and spectral measurements across the full spoilage lifecycle-demonstrate reductions in mean squared error by up to 33 % and mean absolute error by up to 17 % compared to established baselines. These results validate the effectiveness and generalizability of the framework for temporal image analysis in smart agriculture and food quality monitoring.

llm主导的视觉光谱融合:一种零镜头方法用于水果图像的时间分类。
针对水果质量的自动评价,提出了一种零镜头多模态时间图像分类框架。该方法利用大型语言模型生成专家级语义描述,通过GLIP和SAM模型指导零射击目标检测和分割。视觉特征和光谱数据融合捕捉水果的外观和内部生化特性。在新构建的牛油果新鲜度时间光谱数据集(包括整个变质生命周期的每日同步图像和光谱测量)上进行的实验表明,与建立的基线相比,均方误差减少了33%,平均绝对误差减少了17%。这些结果验证了时间图像分析框架在智能农业和食品质量监测中的有效性和普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信