Improving Genomic Prediction Using High-Dimensional Secondary Phenotypes: The Genetic Latent Factor Approach

IF 1.8 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Killian A. C. Melsen, Jonathan F. Kunst, José Crossa, Margaret R. Krause, Fred A. van Eeuwijk, Willem Kruijer, Carel F. W. Peeters
{"title":"Improving Genomic Prediction Using High-Dimensional Secondary Phenotypes: The Genetic Latent Factor Approach","authors":"Killian A. C. Melsen,&nbsp;Jonathan F. Kunst,&nbsp;José Crossa,&nbsp;Margaret R. Krause,&nbsp;Fred A. van Eeuwijk,&nbsp;Willem Kruijer,&nbsp;Carel F. W. Peeters","doi":"10.1002/bimj.70081","DOIUrl":null,"url":null,"abstract":"<p>Decreasing costs and new technologies have led to an increase in the amount of data available to plant breeding programs. High-throughput phenotyping (HTP) platforms routinely generate high-dimensional datasets of secondary features that may be used to improve genomic prediction accuracy. However, integration of these data comes with challenges such as multicollinearity, parameter estimation in <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>&gt;</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$p &gt; n$</annotation>\n </semantics></math> settings, and the computational complexity of many standard approaches. Several methods have emerged to analyze such data, but interpretation of model parameters often remains challenging. We propose genetic latent factor best linear unbiased prediction (glfBLUP), a prediction pipeline that reduces the dimensionality of the original secondary HTP data using generative factor analysis. In short, glfBLUP uses redundancy filtered and regularized genetic and residual correlation matrices to fit a maximum likelihood factor model and estimate genetic latent factor scores. These latent factors are subsequently used in multitrait genomic prediction. Our approach performs better than alternatives in extensive simulations and a real-world application, while producing easily interpretable and biologically relevant parameters. We discuss several possible extensions and highlight glfBLUP as the basis for a flexible and modular multitrait genomic prediction framework.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70081","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Decreasing costs and new technologies have led to an increase in the amount of data available to plant breeding programs. High-throughput phenotyping (HTP) platforms routinely generate high-dimensional datasets of secondary features that may be used to improve genomic prediction accuracy. However, integration of these data comes with challenges such as multicollinearity, parameter estimation in p > n $p > n$ settings, and the computational complexity of many standard approaches. Several methods have emerged to analyze such data, but interpretation of model parameters often remains challenging. We propose genetic latent factor best linear unbiased prediction (glfBLUP), a prediction pipeline that reduces the dimensionality of the original secondary HTP data using generative factor analysis. In short, glfBLUP uses redundancy filtered and regularized genetic and residual correlation matrices to fit a maximum likelihood factor model and estimate genetic latent factor scores. These latent factors are subsequently used in multitrait genomic prediction. Our approach performs better than alternatives in extensive simulations and a real-world application, while producing easily interpretable and biologically relevant parameters. We discuss several possible extensions and highlight glfBLUP as the basis for a flexible and modular multitrait genomic prediction framework.

Abstract Image

利用高维次级表型改进基因组预测:遗传潜在因子方法。
成本的降低和新技术的发展使得植物育种项目的数据量有所增加。高通量表型(HTP)平台通常生成次要特征的高维数据集,可用于提高基因组预测的准确性。然而,这些数据的集成带来了多重共线性、p > n$设置中的参数估计以及许多标准方法的计算复杂性等挑战。已经出现了几种方法来分析这些数据,但模型参数的解释往往仍然具有挑战性。我们提出了遗传潜在因子最佳线性无偏预测(glfBLUP),这是一种利用生成因子分析降低原始次要HTP数据维数的预测管道。简而言之,glfBLUP使用冗余过滤和正则化的遗传和残差相关矩阵来拟合最大似然因子模型并估计遗传潜在因子得分。这些潜在因素随后被用于多性状基因组预测。我们的方法在广泛的模拟和实际应用中比其他方法表现得更好,同时产生易于解释和生物相关的参数。我们讨论了几种可能的扩展,并强调glfBLUP作为灵活和模块化多性状基因组预测框架的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信