BigReg: an efficient registration pipeline for high-resolution X-ray and light-sheet fluorescence microscopy.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-09-01 Epub Date: 2025-10-06 DOI:10.1117/1.JMI.12.5.054004
Siyuan Mei, Fuxin Fan, Mareike Thies, Mingxuan Gu, Fabian Wagner, Oliver Aust, Ina Erceg, Zeynab Mirzaei, Georgiana Neag, Yipeng Sun, Yixing Huang, Andreas Maier
{"title":"BigReg: an efficient registration pipeline for high-resolution X-ray and light-sheet fluorescence microscopy.","authors":"Siyuan Mei, Fuxin Fan, Mareike Thies, Mingxuan Gu, Fabian Wagner, Oliver Aust, Ina Erceg, Zeynab Mirzaei, Georgiana Neag, Yipeng Sun, Yixing Huang, Andreas Maier","doi":"10.1117/1.JMI.12.5.054004","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aim to propose a reliable registration pipeline tailored for multimodal mouse bone imaging using X-ray microscopy (XRM) and light-sheet fluorescence microscopy (LSFM). These imaging modalities have emerged as pivotal tools in preclinical research, particularly for studying bone remodeling diseases such as osteoporosis. Although multimodal registration enables micrometer-level structural correspondence and facilitates functional analysis, conventional landmark-, feature-, or intensity-based approaches are often infeasible due to inconsistent signal characteristics and significant misalignment resulting from independent scanning, especially in real-world and reference-free scenarios.</p><p><strong>Approach: </strong>To address these challenges, we introduce BigReg, an automatic, two-stage registration pipeline optimized for high-resolution XRM and LSFM volumes. The first stage involves extracting surface features and applying two successive global-to-local point-cloud-based methods for coarse alignment. The subsequent stage refines this alignment in the 3D Fourier domain using a modified cross-correlation technique, achieving precise volumetric registration.</p><p><strong>Results: </strong>Evaluations using expert-annotated landmarks and augmented test data demonstrate that BigReg approaches the accuracy of landmark-based registration with a landmark distance (LMD) of <math><mrow><mn>8.36</mn> <mo>±</mo> <mn>0.12</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> and a landmark fitness (LM fitness) of <math><mrow><mn>85.71</mn> <mo>%</mo> <mo>±</mo> <mn>1.02</mn> <mo>%</mo></mrow> </math> . Moreover, BigReg can provide an optimal initialization for mutual information-based methods that otherwise fail independently, further reducing LMD to <math><mrow><mn>7.24</mn> <mo>±</mo> <mn>0.11</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> and increasing LM fitness to <math><mrow><mn>93.90</mn> <mo>%</mo> <mo>±</mo> <mn>0.77</mn> <mo>%</mo></mrow> </math> .</p><p><strong>Conclusions: </strong>To the best of our knowledge, BigReg is the first automated method to successfully register XRM and LSFM volumes without requiring manual intervention or prior alignment cues. Its ability to accurately align fine-scale structures, such as lacunae in XRM and osteocytes in LSFM, opens up new avenues for quantitative, multimodal analysis of bone microarchitecture and disease pathology, particularly in studies of osteoporosis.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"054004"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.5.054004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We aim to propose a reliable registration pipeline tailored for multimodal mouse bone imaging using X-ray microscopy (XRM) and light-sheet fluorescence microscopy (LSFM). These imaging modalities have emerged as pivotal tools in preclinical research, particularly for studying bone remodeling diseases such as osteoporosis. Although multimodal registration enables micrometer-level structural correspondence and facilitates functional analysis, conventional landmark-, feature-, or intensity-based approaches are often infeasible due to inconsistent signal characteristics and significant misalignment resulting from independent scanning, especially in real-world and reference-free scenarios.

Approach: To address these challenges, we introduce BigReg, an automatic, two-stage registration pipeline optimized for high-resolution XRM and LSFM volumes. The first stage involves extracting surface features and applying two successive global-to-local point-cloud-based methods for coarse alignment. The subsequent stage refines this alignment in the 3D Fourier domain using a modified cross-correlation technique, achieving precise volumetric registration.

Results: Evaluations using expert-annotated landmarks and augmented test data demonstrate that BigReg approaches the accuracy of landmark-based registration with a landmark distance (LMD) of 8.36 ± 0.12    μ m and a landmark fitness (LM fitness) of 85.71 % ± 1.02 % . Moreover, BigReg can provide an optimal initialization for mutual information-based methods that otherwise fail independently, further reducing LMD to 7.24 ± 0.11    μ m and increasing LM fitness to 93.90 % ± 0.77 % .

Conclusions: To the best of our knowledge, BigReg is the first automated method to successfully register XRM and LSFM volumes without requiring manual intervention or prior alignment cues. Its ability to accurately align fine-scale structures, such as lacunae in XRM and osteocytes in LSFM, opens up new avenues for quantitative, multimodal analysis of bone microarchitecture and disease pathology, particularly in studies of osteoporosis.

BigReg:用于高分辨率x射线和光片荧光显微镜的高效配准管道。
目的:我们的目标是为x射线显微镜(XRM)和光片荧光显微镜(LSFM)的多模态小鼠骨成像提供可靠的配准管道。这些成像方式已经成为临床前研究的关键工具,特别是研究骨质疏松症等骨重塑疾病。尽管多模态配准可以实现微米级的结构对应并促进功能分析,但由于信号特征不一致以及独立扫描导致的显著不对准,特别是在现实世界和无参考的情况下,传统的基于地标、特征或强度的方法往往是不可行的。方法:为了应对这些挑战,我们引入了BigReg,这是一种针对高分辨率XRM和LSFM卷进行优化的自动两阶段配准管道。第一阶段包括提取表面特征,并应用两个连续的基于全局到局部点云的方法进行粗对准。随后的阶段使用改进的互相关技术在三维傅里叶域中细化这种对齐,实现精确的体积配准。结果:使用专家标注的地标和增强的测试数据进行评估表明,BigReg的地标距离(LMD)为8.36±0.12 μ m,地标适应度(LM适应度)为85.71%±1.02%,接近基于地标的配准精度。此外,BigReg可以为基于互信息的方法提供最优初始化,进一步将LMD降低到7.24±0.11 μ m,将LM适应度提高到93.90%±0.77%。结论:据我们所知,bigregg是第一个在不需要人工干预或事先对齐提示的情况下成功注册XRM和LSFM卷的自动化方法。它能够精确对准精细结构,如XRM中的腔隙和LSFM中的骨细胞,为骨微结构和疾病病理学的定量、多模态分析开辟了新的途径,特别是在骨质疏松症的研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信