Javiera Cortés-Ríos, Maria Rodriguez-Fernandez, Peter Karl Sorger, Fabian Fröhlich
{"title":"Dynamic modelling of cell cycle arrest through integrated single-cell and mathematical modelling approaches.","authors":"Javiera Cortés-Ríos, Maria Rodriguez-Fernandez, Peter Karl Sorger, Fabian Fröhlich","doi":"10.1371/journal.pcbi.1012890","DOIUrl":null,"url":null,"abstract":"<p><p>Highly multiplexed imaging assays allow simultaneous quantification of multiple protein and phosphorylation markers, providing a static snapshots of cell types and states. Pseudo-time techniques can transform these static snapshots of unsynchronized cells into dynamic trajectories, enabling the study of dynamic processes such as development trajectories and the cell cycle. Such ordering also enables training of mathematical models on these data, but technical challenges have hitherto made it difficult to integrate multiple experimental conditions, limiting the predictive power and insights these models can generate. In this work, we propose data processing and model training approaches for integrating multiplexed, multi-condition immunofluorescence data with mathematical modelling. We devise training strategies for mathematical models that are applicable to datasets where cells exhibit oscillatory as well as arrested dynamics and use them to train a cell cycle model on a dataset of MCF-10A mammary epithelial cells exposed to cell-cycle arresting small molecules. We validate the model by investigating predicted growth factor sensitivities and responses to inhibitors of cells at different initial conditions. We anticipate that our framework will generalise to other highly multiplexed measurement techniques such as mass-cytometry, rendering larger bodies of data accessible to dynamic modelling and paving the way to deeper biological insights.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 10","pages":"e1012890"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12520361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012890","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Highly multiplexed imaging assays allow simultaneous quantification of multiple protein and phosphorylation markers, providing a static snapshots of cell types and states. Pseudo-time techniques can transform these static snapshots of unsynchronized cells into dynamic trajectories, enabling the study of dynamic processes such as development trajectories and the cell cycle. Such ordering also enables training of mathematical models on these data, but technical challenges have hitherto made it difficult to integrate multiple experimental conditions, limiting the predictive power and insights these models can generate. In this work, we propose data processing and model training approaches for integrating multiplexed, multi-condition immunofluorescence data with mathematical modelling. We devise training strategies for mathematical models that are applicable to datasets where cells exhibit oscillatory as well as arrested dynamics and use them to train a cell cycle model on a dataset of MCF-10A mammary epithelial cells exposed to cell-cycle arresting small molecules. We validate the model by investigating predicted growth factor sensitivities and responses to inhibitors of cells at different initial conditions. We anticipate that our framework will generalise to other highly multiplexed measurement techniques such as mass-cytometry, rendering larger bodies of data accessible to dynamic modelling and paving the way to deeper biological insights.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.