Taylor Goostrey, Mitchell Ross, Karim Soliman, Lindsay Sheardown, Heather Sheardown
{"title":"Mucoadhesive micelles for ophthalmic drug delivery.","authors":"Taylor Goostrey, Mitchell Ross, Karim Soliman, Lindsay Sheardown, Heather Sheardown","doi":"10.1177/08853282251386004","DOIUrl":null,"url":null,"abstract":"<p><p>The most common formulation for treating ocular conditions is topical eyedrops, despite their well-documented inefficiency. In this study, mucoadhesive nano-micelles were developed to overcome the poor efficacy of topical eyedrops in the treatment of dry eye disease. The micelles contained a pre-activated thiomer capable of releasing mucolytic N-acetylcysteine upon covalent disulfide exchange with the natural mucus layer which covers the surface of the eye. The micelles, approximately 70 nm in diameter, were shown to be mucoadhesive through zeta potential analysis. The critical micelle concentration was determined to be 217 mg/L using the pyrene fluorescence method. The core of the micelles was loaded with cyclosporine A, displaying a greater than 90% entrapment efficiency, and yielding sustained release of approximately 57% over 10 days. The cellular response to the micelles was tested with human corneal epithelial cells by MTT assay and Live/Dead staining. It was found that lower concentrations of the amphiphilic polymer resulted in greater cellular viability and in all cases, viability increased from 24 to 48 h following treatment. Overall, these mucoadhesive systems have potential to provide more efficacious treatment of anterior segment ocular conditions.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251386004"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251386004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The most common formulation for treating ocular conditions is topical eyedrops, despite their well-documented inefficiency. In this study, mucoadhesive nano-micelles were developed to overcome the poor efficacy of topical eyedrops in the treatment of dry eye disease. The micelles contained a pre-activated thiomer capable of releasing mucolytic N-acetylcysteine upon covalent disulfide exchange with the natural mucus layer which covers the surface of the eye. The micelles, approximately 70 nm in diameter, were shown to be mucoadhesive through zeta potential analysis. The critical micelle concentration was determined to be 217 mg/L using the pyrene fluorescence method. The core of the micelles was loaded with cyclosporine A, displaying a greater than 90% entrapment efficiency, and yielding sustained release of approximately 57% over 10 days. The cellular response to the micelles was tested with human corneal epithelial cells by MTT assay and Live/Dead staining. It was found that lower concentrations of the amphiphilic polymer resulted in greater cellular viability and in all cases, viability increased from 24 to 48 h following treatment. Overall, these mucoadhesive systems have potential to provide more efficacious treatment of anterior segment ocular conditions.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.