Yurii I Dikansky, Andrey S Drozdov, Dmitry S Dorozhko
{"title":"Study of Electrophoresis Process in Magnetic Colloids by Magnetic Methods.","authors":"Yurii I Dikansky, Andrey S Drozdov, Dmitry S Dorozhko","doi":"10.1002/elps.70017","DOIUrl":null,"url":null,"abstract":"<p><p>Electrokinetic phenomena play a vital role in the study of colloidal nanoparticles, offering significant insights and applications across a wide range of fundamental research and practical uses. It is crucial to recognize the extensive research on various types of nanomaterials, including polymer latexes, quantum dots, and biomolecules. However, there is a significant gap in the study of magnetic systems. Such materials have immense potential and can greatly benefit from both magnetophoretic and electrophoretic techniques. In this work, the electrophoretic behavior of water-based magnetic fluids was investigated, focusing on how additional magnetic field exposure affects their properties. The studies conducted utilized magnetic measurements that emerged from the presence of colloidal particles within the examined systems, which exhibited both charge and magnetic moment. The magnetic susceptibility and magnetization of colloidal particles precipitate formed on one of the electrodes were measured. The thickness of the formed precipitate on the electrode can be confidently estimated through micrometric measurements as well as by analyzing its magnetic susceptibility during electrophoresis. A formula for calculating the electrophoretic velocity based on the results of magnetic measurements was obtained. Estimates of zeta potential and charge of colloidal particles were carried out. The electrophoresis process in these systems can be effectively regulated by an inhomogeneous magnetic field, leading to complete compensation.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.70017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Electrokinetic phenomena play a vital role in the study of colloidal nanoparticles, offering significant insights and applications across a wide range of fundamental research and practical uses. It is crucial to recognize the extensive research on various types of nanomaterials, including polymer latexes, quantum dots, and biomolecules. However, there is a significant gap in the study of magnetic systems. Such materials have immense potential and can greatly benefit from both magnetophoretic and electrophoretic techniques. In this work, the electrophoretic behavior of water-based magnetic fluids was investigated, focusing on how additional magnetic field exposure affects their properties. The studies conducted utilized magnetic measurements that emerged from the presence of colloidal particles within the examined systems, which exhibited both charge and magnetic moment. The magnetic susceptibility and magnetization of colloidal particles precipitate formed on one of the electrodes were measured. The thickness of the formed precipitate on the electrode can be confidently estimated through micrometric measurements as well as by analyzing its magnetic susceptibility during electrophoresis. A formula for calculating the electrophoretic velocity based on the results of magnetic measurements was obtained. Estimates of zeta potential and charge of colloidal particles were carried out. The electrophoresis process in these systems can be effectively regulated by an inhomogeneous magnetic field, leading to complete compensation.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.