{"title":"Hippocampal CaMKII-α β-hydroxybutyrylation induces memory deficits in mice with type 1 diabetes mellitus.","authors":"Hongchun Li, Rong Chen, Hongbo Wang, Jingwei Tian, Yinglan Zhao, Xiaobo Cen","doi":"10.1038/s42003-025-08832-z","DOIUrl":null,"url":null,"abstract":"<p><p>Memory loss is a manifestation of type 1 diabetes mellitus (T1DM)-induced brain damage resulting from hyperglycemia. However, the mechanism underlying T1DM-induced memory deficit remains largely unknown. In diabetes, ketogenesis occurs upon insulin deficiency, and β-hydroxybutyrate (β-OHB) is synthesized and plays a dominant role in diabetic ketoacidosis. In the present study, we investigate the effect of β-OHB-mediated lysine β-hydroxybutyrylation (kbhb) of hippocampal calcium/calmodulin-dependent kinase II-α (CaMKII-α) on memory deficits in male T1DM mice. We find that streptozotocin (STZ) induced a significant increase in the concentration of hippocampal β-OHB in T1DM mice. High β-OHB levels promote CaMKII-α kbhb at the K42 and K267 residues and further inhibit CaMKII activity. The suppression of CaMKII-α kbhb in the hippocampus via the inhibition of P300, a kbhb transferase, reverse the decrease in CaMKII activity and alleviate memory deficits in T1DM mice. Molecular dynamics (MD) simulations further reveale that the enhanced flexibility caused by CaMKII-α kbhb on the critical, conserved residue K42, which alters its side chain, in the catalytic ATP-binding site of this enzyme may be one of the factors responsible for the observed reduction enzymatic activity. Collectively, our results show that a high β-OHB concentration dysregulates hippocampal CaMKII-α kbhb, which may contribute to memory deficits in T1DM mice.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1435"},"PeriodicalIF":5.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08832-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Memory loss is a manifestation of type 1 diabetes mellitus (T1DM)-induced brain damage resulting from hyperglycemia. However, the mechanism underlying T1DM-induced memory deficit remains largely unknown. In diabetes, ketogenesis occurs upon insulin deficiency, and β-hydroxybutyrate (β-OHB) is synthesized and plays a dominant role in diabetic ketoacidosis. In the present study, we investigate the effect of β-OHB-mediated lysine β-hydroxybutyrylation (kbhb) of hippocampal calcium/calmodulin-dependent kinase II-α (CaMKII-α) on memory deficits in male T1DM mice. We find that streptozotocin (STZ) induced a significant increase in the concentration of hippocampal β-OHB in T1DM mice. High β-OHB levels promote CaMKII-α kbhb at the K42 and K267 residues and further inhibit CaMKII activity. The suppression of CaMKII-α kbhb in the hippocampus via the inhibition of P300, a kbhb transferase, reverse the decrease in CaMKII activity and alleviate memory deficits in T1DM mice. Molecular dynamics (MD) simulations further reveale that the enhanced flexibility caused by CaMKII-α kbhb on the critical, conserved residue K42, which alters its side chain, in the catalytic ATP-binding site of this enzyme may be one of the factors responsible for the observed reduction enzymatic activity. Collectively, our results show that a high β-OHB concentration dysregulates hippocampal CaMKII-α kbhb, which may contribute to memory deficits in T1DM mice.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.