{"title":"Exploring the macrocyclic chemical space for heuristic drug design with deep learning models.","authors":"Feng Hu, Xiaotong Jia, Wenjie Liao, Ziqi Chen, Hongjie Bi, Huan Ge, Dandan Liu, Rongrong Zhang, Yuting Hu, Wenyi Mei, Zhenjiang Zhao, Kai Zhang, Lili Zhu, Yanyan Diao, Honglin Li","doi":"10.1038/s42004-025-01686-w","DOIUrl":null,"url":null,"abstract":"<p><p>Macrocyclic compounds hold great promise as therapeutic agents. However, their structural optimization remains constrained by the limited availability of bioactive candidates, which in turn hampers the systematic exploration of structure-activity relationships. Here we introduce CycleGPT, a generative chemical language model designed specifically to address these challenges. CycleGPT is characterized by a progressive transfer learning paradigm that incrementally transfers knowledge from pre-trained chemical language models to specialized macrocycle generation, thereby overcoming the data shortage issue. Meanwhile, it adopts an innovative probabilistic sampling strategy that effectively improves the structural novelty of generated macrocycles while ensuring domain-specific adaptability. In a prospective drug design based on CycleGPT and a JAK2 activity prediction model, we successfully developed a new JAK2 drug candidate with a good selectivity profile (inhibiting 17 wild-type kinases) and promising potential for treating polycythemia in vivo, demonstrating the practicality of deep learning methods in macrocyclic drug design.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"299"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01686-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrocyclic compounds hold great promise as therapeutic agents. However, their structural optimization remains constrained by the limited availability of bioactive candidates, which in turn hampers the systematic exploration of structure-activity relationships. Here we introduce CycleGPT, a generative chemical language model designed specifically to address these challenges. CycleGPT is characterized by a progressive transfer learning paradigm that incrementally transfers knowledge from pre-trained chemical language models to specialized macrocycle generation, thereby overcoming the data shortage issue. Meanwhile, it adopts an innovative probabilistic sampling strategy that effectively improves the structural novelty of generated macrocycles while ensuring domain-specific adaptability. In a prospective drug design based on CycleGPT and a JAK2 activity prediction model, we successfully developed a new JAK2 drug candidate with a good selectivity profile (inhibiting 17 wild-type kinases) and promising potential for treating polycythemia in vivo, demonstrating the practicality of deep learning methods in macrocyclic drug design.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.