Exploring the macrocyclic chemical space for heuristic drug design with deep learning models.

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Feng Hu, Xiaotong Jia, Wenjie Liao, Ziqi Chen, Hongjie Bi, Huan Ge, Dandan Liu, Rongrong Zhang, Yuting Hu, Wenyi Mei, Zhenjiang Zhao, Kai Zhang, Lili Zhu, Yanyan Diao, Honglin Li
{"title":"Exploring the macrocyclic chemical space for heuristic drug design with deep learning models.","authors":"Feng Hu, Xiaotong Jia, Wenjie Liao, Ziqi Chen, Hongjie Bi, Huan Ge, Dandan Liu, Rongrong Zhang, Yuting Hu, Wenyi Mei, Zhenjiang Zhao, Kai Zhang, Lili Zhu, Yanyan Diao, Honglin Li","doi":"10.1038/s42004-025-01686-w","DOIUrl":null,"url":null,"abstract":"<p><p>Macrocyclic compounds hold great promise as therapeutic agents. However, their structural optimization remains constrained by the limited availability of bioactive candidates, which in turn hampers the systematic exploration of structure-activity relationships. Here we introduce CycleGPT, a generative chemical language model designed specifically to address these challenges. CycleGPT is characterized by a progressive transfer learning paradigm that incrementally transfers knowledge from pre-trained chemical language models to specialized macrocycle generation, thereby overcoming the data shortage issue. Meanwhile, it adopts an innovative probabilistic sampling strategy that effectively improves the structural novelty of generated macrocycles while ensuring domain-specific adaptability. In a prospective drug design based on CycleGPT and a JAK2 activity prediction model, we successfully developed a new JAK2 drug candidate with a good selectivity profile (inhibiting 17 wild-type kinases) and promising potential for treating polycythemia in vivo, demonstrating the practicality of deep learning methods in macrocyclic drug design.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"299"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01686-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Macrocyclic compounds hold great promise as therapeutic agents. However, their structural optimization remains constrained by the limited availability of bioactive candidates, which in turn hampers the systematic exploration of structure-activity relationships. Here we introduce CycleGPT, a generative chemical language model designed specifically to address these challenges. CycleGPT is characterized by a progressive transfer learning paradigm that incrementally transfers knowledge from pre-trained chemical language models to specialized macrocycle generation, thereby overcoming the data shortage issue. Meanwhile, it adopts an innovative probabilistic sampling strategy that effectively improves the structural novelty of generated macrocycles while ensuring domain-specific adaptability. In a prospective drug design based on CycleGPT and a JAK2 activity prediction model, we successfully developed a new JAK2 drug candidate with a good selectivity profile (inhibiting 17 wild-type kinases) and promising potential for treating polycythemia in vivo, demonstrating the practicality of deep learning methods in macrocyclic drug design.

利用深度学习模型探索启发式药物设计的大环化学空间。
大环化合物作为治疗药物具有很大的前景。然而,它们的结构优化仍然受到生物活性候选物有限可用性的限制,这反过来又阻碍了对结构-活性关系的系统探索。在这里,我们介绍CycleGPT,一个专门为解决这些挑战而设计的生成化学语言模型。CycleGPT的特点是采用渐进式迁移学习范式,将知识从预训练的化学语言模型逐步迁移到专门的大循环生成中,从而克服了数据短缺问题。同时,它采用了一种创新的概率采样策略,有效地提高了所生成大环的结构新颖性,同时保证了特定领域的适应性。在基于CycleGPT和JAK2活性预测模型的前瞻性药物设计中,我们成功开发了一种新的JAK2候选药物,该药物具有良好的选择性(抑制17种野生型激酶),并且有望在体内治疗红细胞增生症,证明了深度学习方法在大环药物设计中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信