A hybrid calorimetry-simulation model of mixing enthalpy for molten salt.

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vitaliy G Goncharov, William Smith, Jiahong Li, Jeffrey A Eakin, Erik D Reinhart, James Boncella, Luke D Gibson, Vyacheslav S Bryantsev, Rushi Gong, Shun-Li Shang, Zi-Kui Liu, Hongwu Xu, Aurora Clark, Xiaofeng Guo
{"title":"A hybrid calorimetry-simulation model of mixing enthalpy for molten salt.","authors":"Vitaliy G Goncharov, William Smith, Jiahong Li, Jeffrey A Eakin, Erik D Reinhart, James Boncella, Luke D Gibson, Vyacheslav S Bryantsev, Rushi Gong, Shun-Li Shang, Zi-Kui Liu, Hongwu Xu, Aurora Clark, Xiaofeng Guo","doi":"10.1038/s42004-025-01688-8","DOIUrl":null,"url":null,"abstract":"<p><p>Calorimetric determination of enthalpies of mixing (ΔH<sub>mix</sub>) in multicomponent molten salts is often interpreted using empirical models that lack physically meaningful parameters. However, for improving pyrochemical separation of spent nuclear fuel, where lanthanides are major fission products and critical elements, a deeper thermodynamic understanding of the link between excess thermodynamic properties and solvation structure is critically needed. In this work, we implement a hybrid and physics-informed framework, MIVM+Calorimetry+AIMD, which integrates experimentally measured ΔH<sub>mix</sub> (via high temperature drop calorimetry) with solvation structures from ab initio molecular dynamics (AIMD). This approach is demonstrated using LaCl<sub>3</sub> mixed with eutectic LiCl-KCl (58 mol% - 42 mol%) at 873 K and 1133 K. MIVM-derived parameters enable extrapolation of excess Gibbs energy and La<sup>3+</sup> activity across compositions. In contrast, direct ΔH<sub>mix</sub> predictions from AIMD and polarizable ion model simulations deviate significantly. By incorporating experimentally benchmarked solvation structures into an interpretable thermodynamic model, the MIVM+Calorimetry+AIMD formalism achieves higher accuracy and generalizable method for studying molten salts, offering a robust path for understanding and optimizing molten salt chemistry relevant to nuclear fuel cycles and separation science.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"300"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01688-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Calorimetric determination of enthalpies of mixing (ΔHmix) in multicomponent molten salts is often interpreted using empirical models that lack physically meaningful parameters. However, for improving pyrochemical separation of spent nuclear fuel, where lanthanides are major fission products and critical elements, a deeper thermodynamic understanding of the link between excess thermodynamic properties and solvation structure is critically needed. In this work, we implement a hybrid and physics-informed framework, MIVM+Calorimetry+AIMD, which integrates experimentally measured ΔHmix (via high temperature drop calorimetry) with solvation structures from ab initio molecular dynamics (AIMD). This approach is demonstrated using LaCl3 mixed with eutectic LiCl-KCl (58 mol% - 42 mol%) at 873 K and 1133 K. MIVM-derived parameters enable extrapolation of excess Gibbs energy and La3+ activity across compositions. In contrast, direct ΔHmix predictions from AIMD and polarizable ion model simulations deviate significantly. By incorporating experimentally benchmarked solvation structures into an interpretable thermodynamic model, the MIVM+Calorimetry+AIMD formalism achieves higher accuracy and generalizable method for studying molten salts, offering a robust path for understanding and optimizing molten salt chemistry relevant to nuclear fuel cycles and separation science.

Abstract Image

Abstract Image

Abstract Image

熔盐混合焓的混合量热模拟模型。
多组分熔盐中混合焓(ΔHmix)的量热测定通常使用缺乏物理意义参数的经验模型来解释。然而,为了改善乏核燃料的热化学分离,其中镧系元素是主要的裂变产物和关键元素,迫切需要对过量热力学性质与溶剂化结构之间的联系有更深入的热力学理解。在这项工作中,我们实现了一个混合和物理信息框架,MIVM+量热法+AIMD,它将实验测量的ΔHmix(通过高温降量热法)与从头算分子动力学(AIMD)的溶剂化结构相结合。用LaCl3和共晶LiCl-KCl (58 mol% - 42 mol%)混合在873 K和1133 K下证明了这种方法。mivm衍生的参数可以外推过量吉布斯能量和La3+活性。相比之下,AIMD的直接ΔHmix预测和极化离子模型的模拟有很大的偏差。通过将实验基准溶剂化结构纳入可解释的热力学模型,MIVM+量热法+AIMD形式体系实现了熔盐研究的更高精度和可推广的方法,为理解和优化与核燃料循环和分离科学相关的熔盐化学提供了坚实的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信