Multi-parametric MRI Radiomics models for preoperative assessment of lymph vascular space invasion status in early-stage cervical cancer: A two-center retrospective study.

IF 3.4 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Lei Deng, Rui Zhang, Huabing Lv, Feng Li, Lin Li, Xiaomin Qin, Jiang Yang, Tao Ai, Chencui Huang, Xingzhi Chen, Hui Xing, Feng Wu
{"title":"Multi-parametric MRI Radiomics models for preoperative assessment of lymph vascular space invasion status in early-stage cervical cancer: A two-center retrospective study.","authors":"Lei Deng, Rui Zhang, Huabing Lv, Feng Li, Lin Li, Xiaomin Qin, Jiang Yang, Tao Ai, Chencui Huang, Xingzhi Chen, Hui Xing, Feng Wu","doi":"10.1093/bjr/tqaf248","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To preoperatively predict lymphovascular space invasion (LVSI) in early-stage cervical cancer (CC) using multi-parametric MRI (mpMRI) radiomics models.</p><p><strong>Methods: </strong>This dual-center study included 196 early-stage CC patients (Center A: 142, Dec2020-Apr2023; Center B: 54, May-Oct2023). Center A was partitioned into training (n = 99) and internal validation (n = 43) cohorts; Center B served as external validation. Radiomics features were extracted from T2WI, DWI, and CE-MRI sequences. Feature stability was assessed via intra-class correlation and Dice coefficient, with selection through linear correlation and F-tests. Seven radiomics models (single/combined sequences) were built using the top-performing algorithm among eleven machine learning methods. A combination model (CMIC) integrated the optimal mpMRI model's rad-score with clinical factors. Performance was evaluated by ROC, calibration curves, and DCA across all cohorts.</p><p><strong>Results: </strong>The AdaBoost-based mpMRI model (CE-MRI+DWI+T2WI) utilized 12 selected features. It achieved AUCs of 0.953 (95% CI : 0.916-0.989) in training, 0.868 (0.755-0.981) in internal validation, and 0.797 (0.677-0.916) externally. The CMIC model showed comparable performance (training: 0.957; validation: 0.864; external: 0.847), with no significant differences versus the mpMRI model (p > 0.05 all cohorts).</p><p><strong>Conclusion: </strong>The AdaBoost-driven mpMRI radiomics model effectively predicts LVSI in early-stage CC. Both mpMRI and CMIC models demonstrate robust preoperative predictive capability.</p><p><strong>Advances in knowledge: </strong>This mpMRI radiomics approach using AdaBoost outperforms single-sequence models for LVSI prediction, enabling personalized treatment strategies for early-stage CC.</p>","PeriodicalId":9306,"journal":{"name":"British Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjr/tqaf248","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To preoperatively predict lymphovascular space invasion (LVSI) in early-stage cervical cancer (CC) using multi-parametric MRI (mpMRI) radiomics models.

Methods: This dual-center study included 196 early-stage CC patients (Center A: 142, Dec2020-Apr2023; Center B: 54, May-Oct2023). Center A was partitioned into training (n = 99) and internal validation (n = 43) cohorts; Center B served as external validation. Radiomics features were extracted from T2WI, DWI, and CE-MRI sequences. Feature stability was assessed via intra-class correlation and Dice coefficient, with selection through linear correlation and F-tests. Seven radiomics models (single/combined sequences) were built using the top-performing algorithm among eleven machine learning methods. A combination model (CMIC) integrated the optimal mpMRI model's rad-score with clinical factors. Performance was evaluated by ROC, calibration curves, and DCA across all cohorts.

Results: The AdaBoost-based mpMRI model (CE-MRI+DWI+T2WI) utilized 12 selected features. It achieved AUCs of 0.953 (95% CI : 0.916-0.989) in training, 0.868 (0.755-0.981) in internal validation, and 0.797 (0.677-0.916) externally. The CMIC model showed comparable performance (training: 0.957; validation: 0.864; external: 0.847), with no significant differences versus the mpMRI model (p > 0.05 all cohorts).

Conclusion: The AdaBoost-driven mpMRI radiomics model effectively predicts LVSI in early-stage CC. Both mpMRI and CMIC models demonstrate robust preoperative predictive capability.

Advances in knowledge: This mpMRI radiomics approach using AdaBoost outperforms single-sequence models for LVSI prediction, enabling personalized treatment strategies for early-stage CC.

多参数MRI放射组学模型用于早期宫颈癌术前评估淋巴血管腔浸润状态:一项双中心回顾性研究。
目的:应用多参数MRI (mpMRI)放射组学模型预测早期宫颈癌(CC)术前淋巴血管间隙浸润(LVSI)。方法:该双中心研究纳入了196例早期CC患者(A中心:142例,2020年12月- 2023年4月;B中心:54例,2023年5月- 10月)。中心A分为训练组(n = 99)和内部验证组(n = 43);B中心作为外部验证。从T2WI、DWI和CE-MRI序列中提取放射组学特征。通过类内相关和Dice系数评估特征稳定性,通过线性相关和f检验进行选择。利用11种机器学习方法中表现最好的算法构建了7个放射组学模型(单个/组合序列)。将最佳mpMRI模型的rad评分与临床因素相结合,建立CMIC模型。通过ROC、校准曲线和DCA对所有队列进行评估。结果:基于adaboost的mpMRI模型(CE-MRI+DWI+T2WI)使用了12个选定的特征。训练验证auc为0.953 (95% CI: 0.916-0.989),内部验证auc为0.868(0.755-0.981),外部验证auc为0.797(0.677-0.916)。CMIC模型表现出相当的性能(训练:0.957;验证:0.864;外部:0.847),与mpMRI模型无显著差异(所有队列p < 0.05)。结论:adaboost驱动的mpMRI放射组学模型可有效预测早期CC的LVSI, mpMRI和CMIC模型均具有强大的术前预测能力。知识的进步:这种使用AdaBoost的mpMRI放射组学方法在LVSI预测方面优于单序列模型,可以为早期CC提供个性化的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
British Journal of Radiology
British Journal of Radiology 医学-核医学
CiteScore
5.30
自引率
3.80%
发文量
330
审稿时长
2-4 weeks
期刊介绍: BJR is the international research journal of the British Institute of Radiology and is the oldest scientific journal in the field of radiology and related sciences. Dating back to 1896, BJR’s history is radiology’s history, and the journal has featured some landmark papers such as the first description of Computed Tomography "Computerized transverse axial tomography" by Godfrey Hounsfield in 1973. A valuable historical resource, the complete BJR archive has been digitized from 1896. Quick Facts: - 2015 Impact Factor – 1.840 - Receipt to first decision – average of 6 weeks - Acceptance to online publication – average of 3 weeks - ISSN: 0007-1285 - eISSN: 1748-880X Open Access option
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信