Laboratory-Based Time-Resolved In Situ X-Ray Absorption Spectroscopy for Tracking Transformations of Working Electrocatalysts

IF 3.6 Q1 CHEMISTRY, MULTIDISCIPLINARY
Martina Rüscher, Joon Baek Jang, Andrea Martini, Petrik Bischoff, Wiebke Frandsen, Janis Timoshenko, Beatriz Roldan Cuenya
{"title":"Laboratory-Based Time-Resolved In Situ X-Ray Absorption Spectroscopy for Tracking Transformations of Working Electrocatalysts","authors":"Martina Rüscher,&nbsp;Joon Baek Jang,&nbsp;Andrea Martini,&nbsp;Petrik Bischoff,&nbsp;Wiebke Frandsen,&nbsp;Janis Timoshenko,&nbsp;Beatriz Roldan Cuenya","doi":"10.1002/cmtd.202500016","DOIUrl":null,"url":null,"abstract":"<p>The field of electrocatalysis can play a transformative role in the utilization of renewable electricity and the sustainable production of value-added products. However, to enhance the performance and drive the industrial applicability, the electrocatalysts’ properties and their evolution need to be thoroughly understood and characterized under relevant working conditions and at industrially relevant time-scales. Laboratory-based X-ray absorption spectrometers are promising devices for accessible catalyst characterization, enabling X-ray absorption spectroscopy (XAS) experiments that are not compatible with the traditional synchrotron beamtime access mode. In particular, they allow the screening of a large number of catalysts or experimental parameters and also long-term studies of catalysts’ (de-)activation processes. Here, the feasibility of carrying out laboratory-based in situ and operando XAS studies in combination with electrocatalytic studies at solid–liquid interfaces are demonstrated. In particular, the challenges and possibilities are discussed for tracking the electronic and structural transformations in electrocatalysts with a laboratory-based spectrometer operated in transmission and fluorescence modes. The methodologies presented here will accelerate catalyst development by providing easier access to in situ and operando XAS and will pave the way for new experiment designs and durability studies.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"5 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202500016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202500016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The field of electrocatalysis can play a transformative role in the utilization of renewable electricity and the sustainable production of value-added products. However, to enhance the performance and drive the industrial applicability, the electrocatalysts’ properties and their evolution need to be thoroughly understood and characterized under relevant working conditions and at industrially relevant time-scales. Laboratory-based X-ray absorption spectrometers are promising devices for accessible catalyst characterization, enabling X-ray absorption spectroscopy (XAS) experiments that are not compatible with the traditional synchrotron beamtime access mode. In particular, they allow the screening of a large number of catalysts or experimental parameters and also long-term studies of catalysts’ (de-)activation processes. Here, the feasibility of carrying out laboratory-based in situ and operando XAS studies in combination with electrocatalytic studies at solid–liquid interfaces are demonstrated. In particular, the challenges and possibilities are discussed for tracking the electronic and structural transformations in electrocatalysts with a laboratory-based spectrometer operated in transmission and fluorescence modes. The methodologies presented here will accelerate catalyst development by providing easier access to in situ and operando XAS and will pave the way for new experiment designs and durability studies.

Abstract Image

基于实验室的时间分辨原位x射线吸收光谱法用于跟踪工作电催化剂的转化
电催化领域可以在可再生电力的利用和增值产品的可持续生产方面发挥变革性作用。然而,为了提高性能并推动工业应用,需要在相关的工作条件和工业相关的时间尺度下深入了解和表征电催化剂的性能及其演变。基于实验室的x射线吸收光谱仪是一种很有前途的催化剂表征设备,可以实现与传统同步加速器光束时间访问模式不兼容的x射线吸收光谱(XAS)实验。特别是,它们可以筛选大量的催化剂或实验参数,也可以长期研究催化剂的(脱)活化过程。在这里,进行基于实验室的原位和操作的XAS研究结合电催化研究在固液界面的可行性被证明。特别地,讨论了在透射和荧光模式下使用实验室光谱仪跟踪电催化剂中的电子和结构转变的挑战和可能性。这里提出的方法将通过提供更容易获得原位和操作的XAS来加速催化剂的开发,并将为新的实验设计和耐久性研究铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信