Unraveling the Bifunctional HisIE Enzyme in Acinetobacter baumannii JJAB01: A Novel Therapeutic Target for Combating Antimicrobial Resistance

IF 2.6 4区 医学 Q4 IMMUNOLOGY
Apmis Pub Date : 2025-10-08 DOI:10.1111/apm.70070
Raji Rajmichael, Nagarajan Hemavathy, Sangavi Pandi, Saritha Poopandi, Umashankar Vetrivel, Jeyaraman Jeyakanthan
{"title":"Unraveling the Bifunctional HisIE Enzyme in Acinetobacter baumannii JJAB01: A Novel Therapeutic Target for Combating Antimicrobial Resistance","authors":"Raji Rajmichael,&nbsp;Nagarajan Hemavathy,&nbsp;Sangavi Pandi,&nbsp;Saritha Poopandi,&nbsp;Umashankar Vetrivel,&nbsp;Jeyaraman Jeyakanthan","doi":"10.1111/apm.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Antimicrobial resistance (AMR) in ESKAPE pathogens presents a critical global health challenge, particularly in hospitals. The enzyme HisIE from <i>A. baumannii</i> was explored as a therapeutic target using structure-based drug design to combat bacterial infections. This study integrates various computational approaches, including homology modeling, molecular dynamics simulations (MDS), and structure-based virtual screening to identify the potent inhibitors with high binding affinity and favorable pharmacokinetic properties. High-throughput virtual screening of the COCONUT database identified lead compounds featuring strong binding affinities to protein targets along with favorable pharmacokinetic profiles. CNP0007442, CNP0007145, and CNP0007506 emerged as the most potent candidates based on MM/GBSA binding free energy calculations. They exhibited stable interactions with key active site residues (His98) of <i>Ab</i>HisIE, primarily through Van der Waals and electrostatic forces, enabling enhanced enzyme inhibition. Furthermore, density functional theory analysis revealed optimal HOMO–LUMO energy gaps, indicating the selected compounds' potential reactivity and stability. The findings highlight these candidates for further experimental validation, offering a novel therapeutic approach by disrupting the essential bacterial metabolic pathways. This study identifies promising drug-like molecules targeting <i>Ab</i>HisIE, offering a novel strategy to combat AMR infections.</p>\n </div>","PeriodicalId":8167,"journal":{"name":"Apmis","volume":"133 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apmis","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apm.70070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial resistance (AMR) in ESKAPE pathogens presents a critical global health challenge, particularly in hospitals. The enzyme HisIE from A. baumannii was explored as a therapeutic target using structure-based drug design to combat bacterial infections. This study integrates various computational approaches, including homology modeling, molecular dynamics simulations (MDS), and structure-based virtual screening to identify the potent inhibitors with high binding affinity and favorable pharmacokinetic properties. High-throughput virtual screening of the COCONUT database identified lead compounds featuring strong binding affinities to protein targets along with favorable pharmacokinetic profiles. CNP0007442, CNP0007145, and CNP0007506 emerged as the most potent candidates based on MM/GBSA binding free energy calculations. They exhibited stable interactions with key active site residues (His98) of AbHisIE, primarily through Van der Waals and electrostatic forces, enabling enhanced enzyme inhibition. Furthermore, density functional theory analysis revealed optimal HOMO–LUMO energy gaps, indicating the selected compounds' potential reactivity and stability. The findings highlight these candidates for further experimental validation, offering a novel therapeutic approach by disrupting the essential bacterial metabolic pathways. This study identifies promising drug-like molecules targeting AbHisIE, offering a novel strategy to combat AMR infections.

Abstract Image

揭示鲍曼不动杆菌JJAB01的双功能HisIE酶:对抗抗菌素耐药性的新治疗靶点
ESKAPE病原体的抗微生物药物耐药性(AMR)是一项重大的全球卫生挑战,特别是在医院。利用基于结构的药物设计,探索鲍曼不动杆菌HisIE酶作为治疗靶点来对抗细菌感染。本研究整合了多种计算方法,包括同源性建模、分子动力学模拟(MDS)和基于结构的虚拟筛选,以识别具有高结合亲和力和良好药代动力学性质的有效抑制剂。椰子数据库的高通量虚拟筛选鉴定出与蛋白质靶点具有强结合亲和力的先导化合物以及良好的药代动力学特征。基于MM/GBSA结合自由能计算,CNP0007442、CNP0007145和CNP0007506被认为是最有效的候选者。它们与AbHisIE的关键活性位点残基(His98)表现出稳定的相互作用,主要通过范德华力和静电力,从而增强了酶的抑制作用。此外,密度泛函理论分析显示了最优的HOMO-LUMO能隙,表明所选化合物具有潜在的反应性和稳定性。这些发现突出了这些候选的进一步实验验证,提供了一种新的治疗方法,通过破坏必要的细菌代谢途径。这项研究确定了有希望的靶向AbHisIE的药物样分子,为对抗AMR感染提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Apmis
Apmis 医学-病理学
CiteScore
5.20
自引率
0.00%
发文量
91
审稿时长
2 months
期刊介绍: APMIS, formerly Acta Pathologica, Microbiologica et Immunologica Scandinavica, has been published since 1924 by the Scandinavian Societies for Medical Microbiology and Pathology as a non-profit-making scientific journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信