Strain Engineering of Complex Oxide Membranes on Flexible Metallic Support

IF 2.8
Eric Brand, Pol Salles, Alessandro Palliotto, Haiyuan Wang, Wei Chen, Edwin Dollekamp, Martí Ramis, Q. Li, Jakub Drnec, Juan Maria García-Lastra, Mariona Coll, Nini Pryds, Dae-Sung Park
{"title":"Strain Engineering of Complex Oxide Membranes on Flexible Metallic Support","authors":"Eric Brand,&nbsp;Pol Salles,&nbsp;Alessandro Palliotto,&nbsp;Haiyuan Wang,&nbsp;Wei Chen,&nbsp;Edwin Dollekamp,&nbsp;Martí Ramis,&nbsp;Q. Li,&nbsp;Jakub Drnec,&nbsp;Juan Maria García-Lastra,&nbsp;Mariona Coll,&nbsp;Nini Pryds,&nbsp;Dae-Sung Park","doi":"10.1002/apxr.202500075","DOIUrl":null,"url":null,"abstract":"<p>Controlling material functionalities via external stimuli is a cornerstone of modern science and technology. One effective strategy involves tuning mechanical strain, which can be induced through lattice mismatch, electric fields, or applied mechanical force. Recent advances in fabricating freestanding single-crystalline complex oxide membranes have opened new opportunities for integrating these materials onto previously incompatible platforms such as metals and flexible polymers for next-generation device applications. A key step in strain engineering is understanding and controlling the integration of such materials with flexible substrates. In this study, the integration and adhesion of freestanding single-crystalline La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> (LSMO(001)) membranes onto metallic surfaces (Au, Pt, and TiN) coated on flexible polymer substrates is demonstrated. It is found that the choice of metal underlayer significantly influences the ability to strain the membrane. Using TiN-coated polymer support, a uniform strain of ≈1% in LSMO membranes, along with strong adhesion between the membrane and substrate, is achieved. Theoretical calculations reveal that strong Ti─O bonding and compact in-plane lattice matching at the LSMO(001)/TiN(111) interface lower the interface formation energy compared to noble metals. These findings offer valuable insights for selecting suitable platforms to apply external mechanical stress to freestanding oxide membranes, facilitating their integration into flexible electronic systems.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling material functionalities via external stimuli is a cornerstone of modern science and technology. One effective strategy involves tuning mechanical strain, which can be induced through lattice mismatch, electric fields, or applied mechanical force. Recent advances in fabricating freestanding single-crystalline complex oxide membranes have opened new opportunities for integrating these materials onto previously incompatible platforms such as metals and flexible polymers for next-generation device applications. A key step in strain engineering is understanding and controlling the integration of such materials with flexible substrates. In this study, the integration and adhesion of freestanding single-crystalline La0.7Sr0.3MnO3 (LSMO(001)) membranes onto metallic surfaces (Au, Pt, and TiN) coated on flexible polymer substrates is demonstrated. It is found that the choice of metal underlayer significantly influences the ability to strain the membrane. Using TiN-coated polymer support, a uniform strain of ≈1% in LSMO membranes, along with strong adhesion between the membrane and substrate, is achieved. Theoretical calculations reveal that strong Ti─O bonding and compact in-plane lattice matching at the LSMO(001)/TiN(111) interface lower the interface formation energy compared to noble metals. These findings offer valuable insights for selecting suitable platforms to apply external mechanical stress to freestanding oxide membranes, facilitating their integration into flexible electronic systems.

Abstract Image

柔性金属支架上复合氧化膜的应变工程
通过外部刺激控制物质的功能是现代科学技术的基石。一种有效的策略包括调整机械应变,这可以通过晶格失配、电场或施加机械力来诱导。制造独立单晶复合氧化物膜的最新进展为将这些材料集成到以前不兼容的平台(如金属和柔性聚合物)上开辟了新的机会,用于下一代设备应用。应变工程的一个关键步骤是理解和控制这些材料与柔性基板的集成。在这项研究中,展示了独立单晶La0.7Sr0.3MnO3 (LSMO(001))膜在涂覆在柔性聚合物衬底上的金属表面(Au, Pt和TiN)上的集成和粘附。研究发现,金属衬底的选择对膜的应变能力有显著影响。使用镀锡聚合物载体,在LSMO膜中实现了≈1%的均匀应变,并且膜与基底之间具有很强的附着力。理论计算表明,与贵金属相比,LSMO(001)/TiN(111)界面上强的Ti─O键和紧凑的面内晶格匹配降低了界面形成能。这些发现为选择合适的平台对独立氧化膜施加外部机械应力,促进其集成到柔性电子系统中提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信