{"title":"Static Flocculation in Carbon Black-filled Rubber: from Constrained Filler Motion to Polymer-driven Interfacial Reinforcement","authors":"Yu-Ge Wang, Jun-Lei Guan, Si-Yuan Chen, Yuan Yin, Hong-Guo Sun, Ya-Fang Zheng, Qian-Qian Gu, Zhao-Yan Sun","doi":"10.1007/s10118-025-3391-x","DOIUrl":null,"url":null,"abstract":"<div><p>The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler network evolution. Under dynamic conditions, small oscillatory shear strains (0.1%) significantly enhanced filler particle motion, leading to pronounced agglomeration and a flocculation degree of about 4.3 MPa at 145 °C. In contrast, static flocculation exhibited a fundamentally different mechanism dominated by polymer chain dynamics, which is driven mainly by thermal activation. Radial distribution function (RDF) analysis of transmission electron microscopy (TEM) images revealed a slight decrease (2 nm) in the interparticle distance peak after static annealing at 100 °C for 7 h, indicating localized motion of CB particles. However, the overall filler network remained stable, with no significant agglomeration observed. The increase in bound rubber content from about 23% to 28% with rising temperature further confirmed the dominant role of polymer chain adsorption and interfacial reinforcement in static flocculation. These findings highlight the critical influence of external strain on filler network formation and provide new insights into the polymer-dominated mechanism of static flocculation. The results offer practical guidance for optimizing the storage and processing of rubber nanocomposites, particularly in applications where static flocculation during prolonged storage is a concern.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 10","pages":"1917 - 1928"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3391-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler network evolution. Under dynamic conditions, small oscillatory shear strains (0.1%) significantly enhanced filler particle motion, leading to pronounced agglomeration and a flocculation degree of about 4.3 MPa at 145 °C. In contrast, static flocculation exhibited a fundamentally different mechanism dominated by polymer chain dynamics, which is driven mainly by thermal activation. Radial distribution function (RDF) analysis of transmission electron microscopy (TEM) images revealed a slight decrease (2 nm) in the interparticle distance peak after static annealing at 100 °C for 7 h, indicating localized motion of CB particles. However, the overall filler network remained stable, with no significant agglomeration observed. The increase in bound rubber content from about 23% to 28% with rising temperature further confirmed the dominant role of polymer chain adsorption and interfacial reinforcement in static flocculation. These findings highlight the critical influence of external strain on filler network formation and provide new insights into the polymer-dominated mechanism of static flocculation. The results offer practical guidance for optimizing the storage and processing of rubber nanocomposites, particularly in applications where static flocculation during prolonged storage is a concern.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.