Synergistic Effect of Lewis Acidity and Metal Electronegativity in Ni/C@N Catalyst Enabling Hydrogen-Free Lignin Hydrogenolysis

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Shitong Yu, , , Hao Wu, , , Hongchao Li, , , Jian Wang, , , Usmonov Botir, , , Shuang Liang, , , Zhiqi Zhang, , , Rui Xiao, , and , Zhicheng Luo*, 
{"title":"Synergistic Effect of Lewis Acidity and Metal Electronegativity in Ni/C@N Catalyst Enabling Hydrogen-Free Lignin Hydrogenolysis","authors":"Shitong Yu,&nbsp;, ,&nbsp;Hao Wu,&nbsp;, ,&nbsp;Hongchao Li,&nbsp;, ,&nbsp;Jian Wang,&nbsp;, ,&nbsp;Usmonov Botir,&nbsp;, ,&nbsp;Shuang Liang,&nbsp;, ,&nbsp;Zhiqi Zhang,&nbsp;, ,&nbsp;Rui Xiao,&nbsp;, and ,&nbsp;Zhicheng Luo*,&nbsp;","doi":"10.1021/acs.energyfuels.5c03643","DOIUrl":null,"url":null,"abstract":"<p >Self-hydrogen-supplied hydrogenolysis (SHSH) presents an atom-economical strategy for lignin depolymerization by utilizing intrinsic hydroxyl groups as internal hydrogen donors. However, the high activation energy associated with C<sub>α</sub>–OH dehydrogenation typically requires noble-metal catalysts or harsh conditions, limiting the practical implementation of SHSH. Here, we report a nitrogen-doped, non-noble Ni/C@N catalyst that enables efficient SHSH under mild hydrothermal conditions (140 °C in water). Derived from the pyrolysis of urea-modified nickel metal–organic frameworks, the catalyst features electronegative Ni species and abundant Lewis acid sites, which work synergistically to lower the dehydrogenation barrier by facilitating O–H bond activation and hydrogen abstraction. This design achieves 97.2% dehydrogenation efficiency of C<sub>α</sub>H–OH motifs and delivers a phenolic monomer yield of 35.9 wt % from native birch lignin. Kinetic analysis confirms C<sub>α</sub>H–OH dehydrogenation as the rate-determining step, with an apparent activation energy of just 33.1 kJ mol<sup>–1</sup>. The catalyst exhibits excellent recyclability and enables facile magnetic separation from products. These results establish a noble-metal-free, low-carbon route for lignin valorization and highlight a rational catalyst design strategy for overcoming key kinetic limitations in SHSH processes.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 40","pages":"19322–19331"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c03643","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-hydrogen-supplied hydrogenolysis (SHSH) presents an atom-economical strategy for lignin depolymerization by utilizing intrinsic hydroxyl groups as internal hydrogen donors. However, the high activation energy associated with Cα–OH dehydrogenation typically requires noble-metal catalysts or harsh conditions, limiting the practical implementation of SHSH. Here, we report a nitrogen-doped, non-noble Ni/C@N catalyst that enables efficient SHSH under mild hydrothermal conditions (140 °C in water). Derived from the pyrolysis of urea-modified nickel metal–organic frameworks, the catalyst features electronegative Ni species and abundant Lewis acid sites, which work synergistically to lower the dehydrogenation barrier by facilitating O–H bond activation and hydrogen abstraction. This design achieves 97.2% dehydrogenation efficiency of CαH–OH motifs and delivers a phenolic monomer yield of 35.9 wt % from native birch lignin. Kinetic analysis confirms CαH–OH dehydrogenation as the rate-determining step, with an apparent activation energy of just 33.1 kJ mol–1. The catalyst exhibits excellent recyclability and enables facile magnetic separation from products. These results establish a noble-metal-free, low-carbon route for lignin valorization and highlight a rational catalyst design strategy for overcoming key kinetic limitations in SHSH processes.

Abstract Image

Ni/C@N催化剂中Lewis酸度和金属电负性的协同作用使木质素无氢解氢
自供氢解氢(SHSH)是一种原子经济的木质素解聚策略,利用本构羟基作为内部供氢基团。然而,与c - α - oh脱氢相关的高活化能通常需要贵金属催化剂或苛刻的条件,限制了SHSH的实际实施。在这里,我们报道了一种氮掺杂的非贵金属Ni/C@N催化剂,可以在温和的水热条件下(水中140°C)实现高效的SHSH。该催化剂来源于尿素修饰镍金属-有机骨架的热解过程,具有电负性的Ni种类和丰富的Lewis酸位点,通过促进O-H键的激活和氢的提取,协同作用降低脱氢势垒。该设计使CαH-OH基序脱氢效率达到97.2%,并使天然桦木木质素的酚类单体产率达到35.9%。动力学分析证实,c - α - h - oh脱氢反应是反应速率的决定步骤,表观活化能仅为33.1 kJ mol-1。该催化剂具有优异的可回收性,可使产品易于磁分离。这些结果建立了一条无贵金属、低碳的木质素增值途径,并强调了克服SHSH过程中关键动力学限制的合理催化剂设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信