Substantially improved efficiency and selectivity of carbon dioxide reduction by superior hydrated electron in microdroplet

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qiuyue Ge, Yangyang Liu, Wenbo You, Yumo Li, Wei Wang, Le Yang, Lifang Xie, Kejian Li, Licheng Wang, Minglu Ma, Runbo Wang, Jilun Wang, Tingting Huang, Tao Wang, Xuejun Ruan, Minbiao Ji, Liwu Zhang
{"title":"Substantially improved efficiency and selectivity of carbon dioxide reduction by superior hydrated electron in microdroplet","authors":"Qiuyue Ge,&nbsp;Yangyang Liu,&nbsp;Wenbo You,&nbsp;Yumo Li,&nbsp;Wei Wang,&nbsp;Le Yang,&nbsp;Lifang Xie,&nbsp;Kejian Li,&nbsp;Licheng Wang,&nbsp;Minglu Ma,&nbsp;Runbo Wang,&nbsp;Jilun Wang,&nbsp;Tingting Huang,&nbsp;Tao Wang,&nbsp;Xuejun Ruan,&nbsp;Minbiao Ji,&nbsp;Liwu Zhang","doi":"10.1126/sciadv.adx5714","DOIUrl":null,"url":null,"abstract":"<div >The photochemical conversion of CO<sub>2</sub> into valuable fuels faces challenges of low efficiency and poor selectivity. Hydrated electrons (e<sub>aq</sub><sup>−</sup>), with their extremely negative reduction potential, are promising CO<sub>2</sub>-reducing agents, yet their short lifetime limits selectivity and high-energy-density product formation. Herein, we show that microdroplet interfaces with strong electric fields (10<sup>9</sup> volts per meter) substantially extend the lifespan of e<sub>aq</sub><sup>−</sup> generated from industrial sulfite pollutants (SO<sub>3</sub><sup>2−</sup>), lowering energy barriers in the CO<sub>2</sub> reduction reaction and enabling targeted product formation. The machine learning strategy identified microdroplet size as the key parameter controlling electric field strength, product yield, and selectivity. In our lab-based scaled-up system, microdroplets &lt;10 micrometers improved performance by four to seven orders of magnitude over bulk-phase systems, achieving ~99% methanol selectivity. Strong interfacial electric fields stabilize intermediates and modulate carbon-oxygen bond lengths, directing pathways to high-value products. This approach enables sustainable CO<sub>2</sub> utilization via microdroplets, potentially producing fuels from waste.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx5714","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx5714","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The photochemical conversion of CO2 into valuable fuels faces challenges of low efficiency and poor selectivity. Hydrated electrons (eaq), with their extremely negative reduction potential, are promising CO2-reducing agents, yet their short lifetime limits selectivity and high-energy-density product formation. Herein, we show that microdroplet interfaces with strong electric fields (109 volts per meter) substantially extend the lifespan of eaq generated from industrial sulfite pollutants (SO32−), lowering energy barriers in the CO2 reduction reaction and enabling targeted product formation. The machine learning strategy identified microdroplet size as the key parameter controlling electric field strength, product yield, and selectivity. In our lab-based scaled-up system, microdroplets <10 micrometers improved performance by four to seven orders of magnitude over bulk-phase systems, achieving ~99% methanol selectivity. Strong interfacial electric fields stabilize intermediates and modulate carbon-oxygen bond lengths, directing pathways to high-value products. This approach enables sustainable CO2 utilization via microdroplets, potentially producing fuels from waste.

Abstract Image

微滴中优越的水合电子显著提高了二氧化碳还原效率和选择性
co2光化学转化为有价值的燃料面临效率低和选择性差的挑战。水合电子(eaq−)具有极负的还原电位,是很有前途的CO 2还原剂,但它们的短寿命限制了选择性和高能量密度产物的形成。本研究表明,具有强电场(10 9伏/米)的微滴界面大大延长了工业亚硫酸盐污染物(so32 -)产生的e2 -的寿命,降低了CO 2还原反应中的能量垒,并使目标产物形成成为可能。机器学习策略将微液滴大小确定为控制电场强度、产品收率和选择性的关键参数。在我们基于实验室的放大系统中,10微米的微滴比体相系统的性能提高了4到7个数量级,实现了~99%的甲醇选择性。强界面电场稳定中间体,调节碳-氧键的长度,引导通往高价值产品的途径。这种方法可以通过微滴实现可持续的二氧化碳利用,有可能从废物中生产燃料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信