Plasma-enhanced electronic textiles for energy harvesting

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shaomei Lin, Zhe Cui, Hao Li, Kun Wang, Kerui Li, Qinghong Zhang, Yaogang Li, Chengran Du, Chengyi Hou, Hongzhi Wang
{"title":"Plasma-enhanced electronic textiles for energy harvesting","authors":"Shaomei Lin,&nbsp;Zhe Cui,&nbsp;Hao Li,&nbsp;Kun Wang,&nbsp;Kerui Li,&nbsp;Qinghong Zhang,&nbsp;Yaogang Li,&nbsp;Chengran Du,&nbsp;Chengyi Hou,&nbsp;Hongzhi Wang","doi":"10.1126/sciadv.adx2628","DOIUrl":null,"url":null,"abstract":"<div >Electrostatic energy harvesting and storage technologies for next-generation wearable devices are typically constrained by slow carrier dynamics and dielectric polarization delays. Here, we developed a plasma-enabled energy textile (PEET) by emulating the carrier transport mechanism in lightning return strokes. By engineering plasma-treated discharge microchannels, our design enables direct conduction current generation through cascading ionization, overcoming the efficiency limitations of conventional polarization-dependent systems. Under 2-hertz mechanical excitation, the PEET achieves a current density of 2.5 amperes per square centimeter, an average power output of 4.46 watts per square meter per hertz, and an energy conversion efficiency of 19%—two orders of magnitude higher than conventional electrostatic energy harvesting technologies, e.g., triboelectric, piezoelectric, and capacitive systems. This work represents a transformative advance in electrostatic energy harvesting, enabling efficient and scalable wearable energy solutions.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx2628","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx2628","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrostatic energy harvesting and storage technologies for next-generation wearable devices are typically constrained by slow carrier dynamics and dielectric polarization delays. Here, we developed a plasma-enabled energy textile (PEET) by emulating the carrier transport mechanism in lightning return strokes. By engineering plasma-treated discharge microchannels, our design enables direct conduction current generation through cascading ionization, overcoming the efficiency limitations of conventional polarization-dependent systems. Under 2-hertz mechanical excitation, the PEET achieves a current density of 2.5 amperes per square centimeter, an average power output of 4.46 watts per square meter per hertz, and an energy conversion efficiency of 19%—two orders of magnitude higher than conventional electrostatic energy harvesting technologies, e.g., triboelectric, piezoelectric, and capacitive systems. This work represents a transformative advance in electrostatic energy harvesting, enabling efficient and scalable wearable energy solutions.

Abstract Image

用于能量收集的等离子体增强电子纺织品
下一代可穿戴设备的静电能量收集和存储技术通常受到缓慢的载流子动力学和介电极化延迟的限制。在这里,我们通过模拟闪电回击中的载流子传输机制,开发了一种等离子体激活能量纺织品(PEET)。通过工程等离子体处理的放电微通道,我们的设计能够通过级联电离产生直接传导电流,克服了传统极化依赖系统的效率限制。在2赫兹的机械激励下,PEET的电流密度为每平方厘米2.5安培,平均功率输出为每平方米每赫兹4.46瓦,能量转换效率为19%,比传统的静电能量收集技术(如摩擦电、压电和电容系统)高出两个数量级。这项工作代表了静电能量收集的革命性进步,实现了高效和可扩展的可穿戴能源解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信