Yunzi Mao, Mei Cui, Yanfeng Jiang, Haowen Yu, Meng Wang, Gang Li, Haihui Zhang, Cheng Zhao, Yanxin Shen, Yupeng Hu, Yanpeng An, Yan Lin, Yiyuan Yuan, Pengcheng Lin, Xingdong Chen, Wei Xu, Shi-Min Zhao
{"title":"AMPKα2 signals amino acid insufficiency to inhibit protein synthesis","authors":"Yunzi Mao, Mei Cui, Yanfeng Jiang, Haowen Yu, Meng Wang, Gang Li, Haihui Zhang, Cheng Zhao, Yanxin Shen, Yupeng Hu, Yanpeng An, Yan Lin, Yiyuan Yuan, Pengcheng Lin, Xingdong Chen, Wei Xu, Shi-Min Zhao","doi":"10.1016/j.cmet.2025.09.004","DOIUrl":null,"url":null,"abstract":"The functional difference between the two catalytic subunits, α1 and α2, of AMP-activated protein kinase (AMPK) complexes remains elusive. Herein, we report that AMPKα2 specifically transduces amino acid insufficiency signals to protein synthesis. Low amino acid levels, high protein levels, and reduced phosphorylation of AMPKα threonine 172 (p-T172) are observed in blood samples in patients with Alzheimer’s disease (AD) from a cohort of 1,000,000 Chinese individuals. Loss of <em>α2</em>, but not <em>α1</em>, recaptures these observations and induces AD-like cognitive dysfunction in mice. Mechanistically, low amino acid-activated general control nonderepressible 2 (GCN2) specifically phosphorylates α2 at T172 independent of AMP and fructose 1,6-bisphosphate to inhibit protein synthesis. α2<em>-</em>p-T172 loss renders protein over-synthesis and AD-pathologic protein aggregation in cells and in mouse brain. AMPK activators metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), as well as branched-chain amino acid (BCAA) or protein restriction, α2<em>-</em>p-T172-dependently prevent AD-like symptoms in mice. We identify AMPKα2 as a specific amino acid abundance detector for protein synthesis.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"128 1","pages":""},"PeriodicalIF":30.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.09.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The functional difference between the two catalytic subunits, α1 and α2, of AMP-activated protein kinase (AMPK) complexes remains elusive. Herein, we report that AMPKα2 specifically transduces amino acid insufficiency signals to protein synthesis. Low amino acid levels, high protein levels, and reduced phosphorylation of AMPKα threonine 172 (p-T172) are observed in blood samples in patients with Alzheimer’s disease (AD) from a cohort of 1,000,000 Chinese individuals. Loss of α2, but not α1, recaptures these observations and induces AD-like cognitive dysfunction in mice. Mechanistically, low amino acid-activated general control nonderepressible 2 (GCN2) specifically phosphorylates α2 at T172 independent of AMP and fructose 1,6-bisphosphate to inhibit protein synthesis. α2-p-T172 loss renders protein over-synthesis and AD-pathologic protein aggregation in cells and in mouse brain. AMPK activators metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), as well as branched-chain amino acid (BCAA) or protein restriction, α2-p-T172-dependently prevent AD-like symptoms in mice. We identify AMPKα2 as a specific amino acid abundance detector for protein synthesis.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.