Interface and grain boundary engineering toward better solid oxide cells

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-10-15 DOI:10.1016/j.joule.2025.102138
Yuexia Ji , Lihong Yao , Aruuhan Bayaguud , Nai Shi , Kai Lv , Yijun Zhong , Jiafeng Cao , Cuifang Wang , Zongping Shao
{"title":"Interface and grain boundary engineering toward better solid oxide cells","authors":"Yuexia Ji ,&nbsp;Lihong Yao ,&nbsp;Aruuhan Bayaguud ,&nbsp;Nai Shi ,&nbsp;Kai Lv ,&nbsp;Yijun Zhong ,&nbsp;Jiafeng Cao ,&nbsp;Cuifang Wang ,&nbsp;Zongping Shao","doi":"10.1016/j.joule.2025.102138","DOIUrl":null,"url":null,"abstract":"<div><div>Solid oxide cells (SOCs) are high-temperature electrochemical energy conversion and storage devices, in which the interface and grain boundary are the most enigmatic areas. Rational construction of a high-quality interface/grain boundary is crucial for the promotion of mass transport, the increase of reaction sites, the decrease of technical costs for scale-up, and the improvement of operational stability, which remains the most intriguing challenge in the development of SOCs. In this review, we first provide a comprehensive analysis of the working mechanisms of interfaces and grain boundaries. This is followed by a discussion of optimization principles and a presentation of recent advances in interface/grain boundary engineering. Finally, we proposed perspectives that may lead to promising breakthroughs in the construction of a high-quality interface/grain boundary. This review is expected to be helpful for the scientific development and commercialization of SOCs integrated with renewable energy sources, as well as for other energy utilization research fields involving solid oxides.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 10","pages":"Article 102138"},"PeriodicalIF":35.4000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435125003198","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid oxide cells (SOCs) are high-temperature electrochemical energy conversion and storage devices, in which the interface and grain boundary are the most enigmatic areas. Rational construction of a high-quality interface/grain boundary is crucial for the promotion of mass transport, the increase of reaction sites, the decrease of technical costs for scale-up, and the improvement of operational stability, which remains the most intriguing challenge in the development of SOCs. In this review, we first provide a comprehensive analysis of the working mechanisms of interfaces and grain boundaries. This is followed by a discussion of optimization principles and a presentation of recent advances in interface/grain boundary engineering. Finally, we proposed perspectives that may lead to promising breakthroughs in the construction of a high-quality interface/grain boundary. This review is expected to be helpful for the scientific development and commercialization of SOCs integrated with renewable energy sources, as well as for other energy utilization research fields involving solid oxides.

Abstract Image

Abstract Image

界面和晶界工程,以更好的固体氧化物电池
固体氧化物电池(SOCs)是一种高温电化学能量转换和存储装置,其中界面和晶界是最神秘的区域。合理构建高质量的界面/晶界对于促进质量输运、增加反应位点、降低放大技术成本和提高运行稳定性至关重要,这是soc发展中最令人感兴趣的挑战。在本文中,我们首先对界面和晶界的工作机制进行了全面的分析。接下来是优化原理的讨论和界面/晶界工程的最新进展的介绍。最后,我们提出了可能导致高质量界面/晶界构建有希望突破的观点。本文的研究对可再生能源有机碳的科学开发和商业化以及其他涉及固体氧化物的能源利用研究领域具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信