Unraveling the Connection Between Subsurface Stress and Geomorphic Features

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
B. Kuhasubpasin, S. Moon, C. Lithgow-Bertelloni
{"title":"Unraveling the Connection Between Subsurface Stress and Geomorphic Features","authors":"B. Kuhasubpasin, S. Moon, C. Lithgow-Bertelloni","doi":"10.1029/2025gl116798","DOIUrl":null,"url":null,"abstract":"The tectonic stress field induces surface deformation. At long wavelengths, both lithospheric heterogeneity (changes in the thickness and density of crust and lithospheric mantle) and basal tractions from mantle convection contribute to the stress field. Here, we analyze the global alignment of principal horizontal tectonic stresses, fault traces, and river flow directions to infer whether and how deep subsurface stresses control geomorphic features. We find that fault trace orientations are consistent with predictions from Anderson's fault theory. River directions largely align with fault traces and partly with stresses. The degree of alignment depends on fault regime, the source of stress, and river order. Extensional faulting is best predicted by stresses from lithospheric structure variations, while compressive faulting is best predicted by stresses from mantle flow. We propose a metric to quantify the relative influence of mantle flow or lithospheric heterogeneity on surface features, which provides a proxy for lithospheric strength.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"107 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2025gl116798","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tectonic stress field induces surface deformation. At long wavelengths, both lithospheric heterogeneity (changes in the thickness and density of crust and lithospheric mantle) and basal tractions from mantle convection contribute to the stress field. Here, we analyze the global alignment of principal horizontal tectonic stresses, fault traces, and river flow directions to infer whether and how deep subsurface stresses control geomorphic features. We find that fault trace orientations are consistent with predictions from Anderson's fault theory. River directions largely align with fault traces and partly with stresses. The degree of alignment depends on fault regime, the source of stress, and river order. Extensional faulting is best predicted by stresses from lithospheric structure variations, while compressive faulting is best predicted by stresses from mantle flow. We propose a metric to quantify the relative influence of mantle flow or lithospheric heterogeneity on surface features, which provides a proxy for lithospheric strength.
揭示地下应力与地貌特征之间的联系
构造应力场诱发地表变形。在长波波段,岩石圈的非均质性(地壳和岩石圈地幔厚度和密度的变化)和地幔对流的基底牵引力都是应力场的组成部分。在这里,我们分析了主要水平构造应力、断层迹线和河流流向的全球走向,以推断深部地下应力是否以及如何控制地貌特征。发现断层迹线方向与Anderson断层理论预测一致。河流方向大部分与断层轨迹一致,部分与应力方向一致。走向的程度取决于断层制度、应力源和河流顺序。岩石圈结构变化的应力最能预测伸展断裂,而地幔流的应力最能预测挤压断裂。我们提出了一个度量来量化地幔流动或岩石圈非均质性对地表特征的相对影响,这为岩石圈强度提供了一个代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信