Akshay Gaikwad, Manuel Sebastian Torres, Shahnawaz Ahmed and Anton Frisk Kockum
{"title":"Gradient-descent methods for fast quantum state tomography","authors":"Akshay Gaikwad, Manuel Sebastian Torres, Shahnawaz Ahmed and Anton Frisk Kockum","doi":"10.1088/2058-9565/ae0baa","DOIUrl":null,"url":null,"abstract":"Quantum state tomography (QST) is a widely employed technique for characterizing the state of a quantum system. However, it is plagued by two fundamental challenges: computational and experimental complexity grows exponentially with the number of qubits, rendering experimental implementation and data post-processing arduous even for moderately sized systems. Here, we introduce gradient-descent (GD) algorithms for the post-processing step of QST in discrete- and continuous-variable systems. To ensure physically valid state reconstruction at each iteration step of the algorithm, we use various density-matrix parameterizations: Cholesky decomposition, Stiefel manifold, and projective normalization. These parameterizations have the added benefit of enabling a rank-controlled ansatz, which simplifies reconstruction when there is prior information about the system. We benchmark the performance of our GD-QST techniques against state-of-the-art methods, including constrained convex optimization, conditional generative adversarial networks, and iterative maximum likelihood estimation. Our comparison focuses on time complexity, iteration counts, data requirements, state rank, and robustness against noise. We find that rank-controlled ansatzes in our stochastic mini-batch GD-QST algorithms effectively handle noisy and incomplete data sets, yielding significantly higher reconstruction fidelity than other methods. Simulations achieving full-rank seven-qubit QST in under three minutes on a standard laptop, with 18 GB of RAM and no dedicated GPU, highlight that GD-QST is computationally more efficient and outperforms other techniques in most scenarios, offering a promising avenue for characterizing noisy intermediate-scale quantum devices. Our Python code for GD-QST algorithms is publicly available at github.com/mstorresh/GD-QST.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"18 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae0baa","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum state tomography (QST) is a widely employed technique for characterizing the state of a quantum system. However, it is plagued by two fundamental challenges: computational and experimental complexity grows exponentially with the number of qubits, rendering experimental implementation and data post-processing arduous even for moderately sized systems. Here, we introduce gradient-descent (GD) algorithms for the post-processing step of QST in discrete- and continuous-variable systems. To ensure physically valid state reconstruction at each iteration step of the algorithm, we use various density-matrix parameterizations: Cholesky decomposition, Stiefel manifold, and projective normalization. These parameterizations have the added benefit of enabling a rank-controlled ansatz, which simplifies reconstruction when there is prior information about the system. We benchmark the performance of our GD-QST techniques against state-of-the-art methods, including constrained convex optimization, conditional generative adversarial networks, and iterative maximum likelihood estimation. Our comparison focuses on time complexity, iteration counts, data requirements, state rank, and robustness against noise. We find that rank-controlled ansatzes in our stochastic mini-batch GD-QST algorithms effectively handle noisy and incomplete data sets, yielding significantly higher reconstruction fidelity than other methods. Simulations achieving full-rank seven-qubit QST in under three minutes on a standard laptop, with 18 GB of RAM and no dedicated GPU, highlight that GD-QST is computationally more efficient and outperforms other techniques in most scenarios, offering a promising avenue for characterizing noisy intermediate-scale quantum devices. Our Python code for GD-QST algorithms is publicly available at github.com/mstorresh/GD-QST.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.