Defect-modulated oxygen adsorption and Z-scheme charge transfer for highly selective H2O2 photosynthesis in pure water.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zixiang Gao,Fuyu Liu,Zongwei Chen,Qiang Song,Patrick J Cullen,Xiaoyu Zhang,Zhihong Zuo,Jun Zhong,Xize Lu,Zhuofeng Hu,Runzeng Liu,Qingzhe Zhang,Yongguang Yin,Yong Cai
{"title":"Defect-modulated oxygen adsorption and Z-scheme charge transfer for highly selective H2O2 photosynthesis in pure water.","authors":"Zixiang Gao,Fuyu Liu,Zongwei Chen,Qiang Song,Patrick J Cullen,Xiaoyu Zhang,Zhihong Zuo,Jun Zhong,Xize Lu,Zhuofeng Hu,Runzeng Liu,Qingzhe Zhang,Yongguang Yin,Yong Cai","doi":"10.1038/s41467-025-64166-8","DOIUrl":null,"url":null,"abstract":"Solar-driven H2O2 production provides an eco-friendly and scalable alternative to conventional anthraquinone processes. However, its efficiency has been limited by the inefficient charge separation and poor selectivity for the two-electron oxygen reduction reaction (2e- ORR). Here we report a Z-scheme heterojunction photocatalyst constructed by in-situ growth of sulfur-deficient ZnIn2S4 nanosheets onto UiO-66-NH2 (a zirconium-based metal-organic framework). This heterojunction promotes efficient charge separation while retaining strong redox capability, and sulfur vacancies regulate O2 adsorption into a configuration that suppresses O-O bond cleavage and favors 2e- ORR. As a result, the composite achieves a high H2O2 production rate of 3200 μmol g-1 h-1 with 94.3% selectivity in pure water under ambient air and visible light. A continuous-flow prototype exhibits stable performance for over 200 h, and the generated H2O2 solution enables direct bacteria disinfection. Spectroscopic and theoretical analyses reveal the critical role of sulfur vacancies in optimizing O2 activation. Our findings highlight a synergistic strategy of tuning charge dynamics and O2 adsorption configurations for designing next-generation systems for sustainable H2O2 production and water disinfection.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"209 1","pages":"8889"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64166-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven H2O2 production provides an eco-friendly and scalable alternative to conventional anthraquinone processes. However, its efficiency has been limited by the inefficient charge separation and poor selectivity for the two-electron oxygen reduction reaction (2e- ORR). Here we report a Z-scheme heterojunction photocatalyst constructed by in-situ growth of sulfur-deficient ZnIn2S4 nanosheets onto UiO-66-NH2 (a zirconium-based metal-organic framework). This heterojunction promotes efficient charge separation while retaining strong redox capability, and sulfur vacancies regulate O2 adsorption into a configuration that suppresses O-O bond cleavage and favors 2e- ORR. As a result, the composite achieves a high H2O2 production rate of 3200 μmol g-1 h-1 with 94.3% selectivity in pure water under ambient air and visible light. A continuous-flow prototype exhibits stable performance for over 200 h, and the generated H2O2 solution enables direct bacteria disinfection. Spectroscopic and theoretical analyses reveal the critical role of sulfur vacancies in optimizing O2 activation. Our findings highlight a synergistic strategy of tuning charge dynamics and O2 adsorption configurations for designing next-generation systems for sustainable H2O2 production and water disinfection.
纯水中高选择性H2O2光合作用的缺陷调制氧吸附和z -方案电荷转移。
太阳能驱动的H2O2生产为传统的蒽醌工艺提供了一种环保且可扩展的替代方案。然而,其效率受到电荷分离效率低和双电子氧还原反应(2e- ORR)选择性差的限制。本文报道了一种通过原位生长在UiO-66-NH2(锆基金属有机骨架)上的缺硫ZnIn2S4纳米片构建的Z-scheme异质结光催化剂。这种异质结促进了有效的电荷分离,同时保持了强大的氧化还原能力,并且硫空位调节O2吸附成抑制O-O键裂解并有利于2e- ORR的构型。结果表明,在环境空气和可见光条件下,该复合材料在纯水条件下的H2O2产率高达3200 μmol g-1 h-1,选择性为94.3%。连续流动的原型机表现出超过200小时的稳定性能,产生的H2O2溶液可以直接消毒细菌。光谱和理论分析揭示了硫空位在优化氧活化过程中的关键作用。我们的研究结果强调了调整电荷动力学和O2吸附配置的协同策略,用于设计下一代可持续H2O2生产和水消毒系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信