Hollie Blaydes, Emma Gardner, J. Duncan Whyatt, Simon G. Potts, Robert Dunford-Brown, John W. Redhead, Alona Armstrong
{"title":"Solar Farms as Potential Future Refuges for Bumblebees","authors":"Hollie Blaydes, Emma Gardner, J. Duncan Whyatt, Simon G. Potts, Robert Dunford-Brown, John W. Redhead, Alona Armstrong","doi":"10.1111/gcb.70537","DOIUrl":null,"url":null,"abstract":"<p>Solar farms offer an opportunity for habitat creation for wildlife, including insect pollinators, potentially simultaneously contributing to both low-carbon energy and nature recovery. However, it is unknown whether cobenefits would persist under future land-use change given that habitat value is context dependent. For the 1042 operational solar farms in Great Britain, we predict their ability to support bumblebee populations (both inside and outside the solar farm) under three different socioeconomic futures. These futures represent alternative 1 km scale landcover projections for the year 2050 with accompanying narratives. We downscale these to 10 m resolution, spatially allocating crop rotations, agri-environment interventions and other habitat features consistent with the scenario narratives, to realistically represent fine-scale landscape elements of relevance to bumblebee populations. We then input these detailed maps into a sophisticated process-based model that simulates bumblebee foraging and population dynamics, enabling us to predict bumblebee density in and around Great Britain's solar farms, accounting for the effects of their changed habitat context and configuration in these different future scenarios. We isolate the drivers of bumblebee density change across scenarios and scales and show that solar farm management was the main driver of bumblebee density within solar farms, with ~120% higher densities inside florally enhanced compared to turf grass solar farms, although the exact figure was influenced by wider landcover changes. In foraging zones immediately surrounding solar farms, landscape changes had a greater impact on bumblebee densities, suggesting a single solar farm in isolation generally did not counteract the influence of wider land-use changes expected under future scenarios. In addition to providing insights into the potential future value of pollinator habitat on solar farms, our methodology demonstrates how combining process-based modelling with landcover projections that are downscaled to ecologically relevant resolutions can be used to better assess future effectiveness of habitat interventions. This represents a step change in our ability to account for species' interactions with socioeconomically driven futures, which can be extended and applied to other taxa and land-use interventions.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 10","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70537","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70537","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Solar farms offer an opportunity for habitat creation for wildlife, including insect pollinators, potentially simultaneously contributing to both low-carbon energy and nature recovery. However, it is unknown whether cobenefits would persist under future land-use change given that habitat value is context dependent. For the 1042 operational solar farms in Great Britain, we predict their ability to support bumblebee populations (both inside and outside the solar farm) under three different socioeconomic futures. These futures represent alternative 1 km scale landcover projections for the year 2050 with accompanying narratives. We downscale these to 10 m resolution, spatially allocating crop rotations, agri-environment interventions and other habitat features consistent with the scenario narratives, to realistically represent fine-scale landscape elements of relevance to bumblebee populations. We then input these detailed maps into a sophisticated process-based model that simulates bumblebee foraging and population dynamics, enabling us to predict bumblebee density in and around Great Britain's solar farms, accounting for the effects of their changed habitat context and configuration in these different future scenarios. We isolate the drivers of bumblebee density change across scenarios and scales and show that solar farm management was the main driver of bumblebee density within solar farms, with ~120% higher densities inside florally enhanced compared to turf grass solar farms, although the exact figure was influenced by wider landcover changes. In foraging zones immediately surrounding solar farms, landscape changes had a greater impact on bumblebee densities, suggesting a single solar farm in isolation generally did not counteract the influence of wider land-use changes expected under future scenarios. In addition to providing insights into the potential future value of pollinator habitat on solar farms, our methodology demonstrates how combining process-based modelling with landcover projections that are downscaled to ecologically relevant resolutions can be used to better assess future effectiveness of habitat interventions. This represents a step change in our ability to account for species' interactions with socioeconomically driven futures, which can be extended and applied to other taxa and land-use interventions.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.