High-Q, Size-Independent, and Reconfigurable Optical Antennas Embedded in Zero-Index Cavities

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-07 DOI:10.1021/acsnano.5c04424
Prasad P. Iyer*, , , Mihir Pendharkar, , , Anchal Agarwal, , , Humberto Foronda, , , Micheal Iza, , , Umesh K. Mishra, , , Shuji Nakamura, , , Steven DenBaars, , , Stacia Keller, , , Chris Palmstrøm, , and , Jon A. Schuller*, 
{"title":"High-Q, Size-Independent, and Reconfigurable Optical Antennas Embedded in Zero-Index Cavities","authors":"Prasad P. Iyer*,&nbsp;, ,&nbsp;Mihir Pendharkar,&nbsp;, ,&nbsp;Anchal Agarwal,&nbsp;, ,&nbsp;Humberto Foronda,&nbsp;, ,&nbsp;Micheal Iza,&nbsp;, ,&nbsp;Umesh K. Mishra,&nbsp;, ,&nbsp;Shuji Nakamura,&nbsp;, ,&nbsp;Steven DenBaars,&nbsp;, ,&nbsp;Stacia Keller,&nbsp;, ,&nbsp;Chris Palmstrøm,&nbsp;, and ,&nbsp;Jon A. Schuller*,&nbsp;","doi":"10.1021/acsnano.5c04424","DOIUrl":null,"url":null,"abstract":"<p >Enhancing light–matter interactions at the nanoscale is foundational to nanophotonics, with epsilon-near-zero (ENZ) materials demonstrating significant potential. High-quality factor (<i>Q</i>) resonances that maximize these interactions are typically realized in photonic crystals requiring sub-50 nm precision nanofabrication over large areas, limiting scalability and increasing complexity. Mie resonances offer an alternative but are constrained by low <i>Q</i>-factors due to the scarcity of high-refractive index materials, necessitating large refractive index changes for effective resonance switching and limiting dynamic reconfigurability. We overcome these limitations by embedding Mie resonators within ENZ media, thereby enhancing <i>Q</i>-factors, mitigating geometric dispersion and fabrication challenges, and maximizing optical reconfigurability. We introduce three resonator-ENZ configurations: voids in AlN, Ge in SiO<sub>2</sub>, and intrinsic InSb in doped InSb─spanning from low-loss phononic to lossy plasmonic ENZ modes. Using novel epitaxial regrowth techniques, we achieve significant <i>Q</i>-factor improvements over nonembedded resonators. An air-based Mie resonator embedded in AlN supports resonant <i>Q</i>-factors exceeding 100, with negligible geometric dispersion across sizes from 800  to 2800 nm. Additionally, we demonstrate dynamic reconfigurability of intrinsic InSb resonators by thermally tuning the ENZ wavelength over a 2 μm range in the mid-infrared (11–16 μm) wavelength regime. These results showcase the potential of Mie reonators embedded in ENZ media for high-fidelity sensors, thermal emitters, and reconfigurable metasurfaces, bridging theoretical predictions with practical applications and advancing the development of dynamic, high-<i>Q</i> optical devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 41","pages":"36148–36157"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c04424","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing light–matter interactions at the nanoscale is foundational to nanophotonics, with epsilon-near-zero (ENZ) materials demonstrating significant potential. High-quality factor (Q) resonances that maximize these interactions are typically realized in photonic crystals requiring sub-50 nm precision nanofabrication over large areas, limiting scalability and increasing complexity. Mie resonances offer an alternative but are constrained by low Q-factors due to the scarcity of high-refractive index materials, necessitating large refractive index changes for effective resonance switching and limiting dynamic reconfigurability. We overcome these limitations by embedding Mie resonators within ENZ media, thereby enhancing Q-factors, mitigating geometric dispersion and fabrication challenges, and maximizing optical reconfigurability. We introduce three resonator-ENZ configurations: voids in AlN, Ge in SiO2, and intrinsic InSb in doped InSb─spanning from low-loss phononic to lossy plasmonic ENZ modes. Using novel epitaxial regrowth techniques, we achieve significant Q-factor improvements over nonembedded resonators. An air-based Mie resonator embedded in AlN supports resonant Q-factors exceeding 100, with negligible geometric dispersion across sizes from 800  to 2800 nm. Additionally, we demonstrate dynamic reconfigurability of intrinsic InSb resonators by thermally tuning the ENZ wavelength over a 2 μm range in the mid-infrared (11–16 μm) wavelength regime. These results showcase the potential of Mie reonators embedded in ENZ media for high-fidelity sensors, thermal emitters, and reconfigurable metasurfaces, bridging theoretical predictions with practical applications and advancing the development of dynamic, high-Q optical devices.

Abstract Image

嵌入在零折射率腔中的高q、尺寸无关和可重构光学天线。
在纳米尺度上增强光与物质的相互作用是纳米光子学的基础,epsilon-near-zero (ENZ)材料显示出巨大的潜力。使这些相互作用最大化的高质量因子(Q)共振通常在光子晶体中实现,需要在大面积上实现低于50 nm的精度纳米加工,这限制了可扩展性并增加了复杂性。Mie共振提供了另一种选择,但由于高折射率材料的稀缺性,它受到低q因子的限制,需要大的折射率变化来实现有效的共振切换,并限制了动态可重构性。我们通过在ENZ介质中嵌入Mie谐振器来克服这些限制,从而提高q因子,减轻几何色散和制造挑战,并最大限度地提高光学可重构性。我们介绍了三种谐振腔-ENZ结构:AlN中的空洞,SiO2中的Ge,以及掺杂InSb中的本征InSb,从低损耗声子到损耗等离子体ENZ模式。使用新颖的外延再生技术,我们实现了显著的q因子改善比非嵌入式谐振器。嵌入AlN的空气基Mie谐振器支持超过100的谐振q因子,从800 到2800 nm的几何色散可以忽略不计。此外,我们通过在中红外(11-16 μm)波长范围内热调谐ENZ波长,证明了内在InSb谐振器的动态可重构性。这些结果展示了嵌入ENZ介质的Mie谐振器在高保真传感器、热发射器和可重构超表面方面的潜力,将理论预测与实际应用联系起来,推动了动态、高q光学器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信