{"title":"Q-space Guided Multi-Modal Translation Network for Diffusion-Weighted Image Synthesis.","authors":"Pengli Zhu,Yingji Fu,Nanguang Chen,Anqi Qiu","doi":"10.1109/tmi.2025.3618683","DOIUrl":null,"url":null,"abstract":"Diffusion-weighted imaging (DWI) enables non-invasive characterization of tissue microstructure, yet acquiring densely sampled q-space data remains time-consuming and impractical in many clinical settings. Existing deep learning methods are typically constrained by fixed q-space sampling, limiting their adaptability to variable sampling scenarios. In this paper, we propose a Q-space Guided Multi-Modal Translation Network (Q-MMTN) for synthesizing multi-shell, high-angular resolution DWI (MS-HARDI) from flexible q-space sampling, leveraging commonly acquired structural data (e.g., T1- and T2-weighted MRI). Q-MMTN integrates the hybrid encoder and multi-modal attention fusion mechanism to effectively extract both local and global complementary information from multiple modalities. This design enhances feature representation and, together with a flexible q-space-aware embedding, enables dynamic modulation of internal features without relying on fixed sampling schemes. Additionally, we introduce a set of task-specific constraints, including adversarial, reconstruction, and anatomical consistency losses, which jointly enforce anatomical fidelity and signal realism. These constraints guide Q-MMTN to accurately capture the intrinsic and nonlinear relationships between directional DWI signals and q-space information. Extensive experiments across four lifespan datasets of children, adolescents, young and older adults demonstrate that Q-MMTN outperforms existing methods, including 1D-qDL, 2D-qDL, MESC-SD, and Q-GAN in estimating parameter maps and fiber tracts with fine-grained anatomical details. Notably, its ability to accommodate flexible q-space sampling highlights its potential as a promising toolkit for clinical and research applications. Our code is available at https://github.com/Idea89560041/Q-MMTN.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"33 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3618683","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion-weighted imaging (DWI) enables non-invasive characterization of tissue microstructure, yet acquiring densely sampled q-space data remains time-consuming and impractical in many clinical settings. Existing deep learning methods are typically constrained by fixed q-space sampling, limiting their adaptability to variable sampling scenarios. In this paper, we propose a Q-space Guided Multi-Modal Translation Network (Q-MMTN) for synthesizing multi-shell, high-angular resolution DWI (MS-HARDI) from flexible q-space sampling, leveraging commonly acquired structural data (e.g., T1- and T2-weighted MRI). Q-MMTN integrates the hybrid encoder and multi-modal attention fusion mechanism to effectively extract both local and global complementary information from multiple modalities. This design enhances feature representation and, together with a flexible q-space-aware embedding, enables dynamic modulation of internal features without relying on fixed sampling schemes. Additionally, we introduce a set of task-specific constraints, including adversarial, reconstruction, and anatomical consistency losses, which jointly enforce anatomical fidelity and signal realism. These constraints guide Q-MMTN to accurately capture the intrinsic and nonlinear relationships between directional DWI signals and q-space information. Extensive experiments across four lifespan datasets of children, adolescents, young and older adults demonstrate that Q-MMTN outperforms existing methods, including 1D-qDL, 2D-qDL, MESC-SD, and Q-GAN in estimating parameter maps and fiber tracts with fine-grained anatomical details. Notably, its ability to accommodate flexible q-space sampling highlights its potential as a promising toolkit for clinical and research applications. Our code is available at https://github.com/Idea89560041/Q-MMTN.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.