{"title":"Scale-up of complex molecular reaction system by hybrid mechanistic modeling and deep transfer learning.","authors":"Zhengyu Chen,Yongqing Xie,Chunming Xu,Linzhou Zhang","doi":"10.1038/s41467-025-63982-2","DOIUrl":null,"url":null,"abstract":"The scale-up of chemical processes involves substantial changes in reactor size, operational modes, and data characteristics, leading to significant challenges in predicting product distribution across scales. This study presents a unified modeling framework that integrates the mechanistic model with deep transfer learning to accelerate chemical process scale-up. The framework is demonstrated through a case study on naphtha fluid catalytic cracking. A molecular-level kinetic model was developed from laboratory-scale experimental data, and a deep neural network was designed and trained to represent complex molecular reaction systems. To address the challenge of discrepancies in data types at various scales, a property-informed transfer learning strategy was developed by incorporating bulk property equations into the neural network. This approach enabled automated prediction of pilot-scale product distribution with minimal data. Moreover, process conditions of the pilot plant were optimized using a multi-objective optimization algorithm.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"86 1","pages":"8905"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63982-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The scale-up of chemical processes involves substantial changes in reactor size, operational modes, and data characteristics, leading to significant challenges in predicting product distribution across scales. This study presents a unified modeling framework that integrates the mechanistic model with deep transfer learning to accelerate chemical process scale-up. The framework is demonstrated through a case study on naphtha fluid catalytic cracking. A molecular-level kinetic model was developed from laboratory-scale experimental data, and a deep neural network was designed and trained to represent complex molecular reaction systems. To address the challenge of discrepancies in data types at various scales, a property-informed transfer learning strategy was developed by incorporating bulk property equations into the neural network. This approach enabled automated prediction of pilot-scale product distribution with minimal data. Moreover, process conditions of the pilot plant were optimized using a multi-objective optimization algorithm.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.