Simulating Glaucoma Progression in the Retinal Ganglion Cell Layer with Generative Adversarial Networks.

Peraza Alejandro, Gómez-Perera Sandra, Arnay Rafael, Sigut Saavedra José, Díaz-Alemán Tinguaro
{"title":"Simulating Glaucoma Progression in the Retinal Ganglion Cell Layer with Generative Adversarial Networks.","authors":"Peraza Alejandro, Gómez-Perera Sandra, Arnay Rafael, Sigut Saavedra José, Díaz-Alemán Tinguaro","doi":"10.1016/j.oftale.2025.10.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The main objective of this study is to develop a tool capable of synthesizing images of the ganglion cell layer (GCL) that simulate glaucoma progression using generative antagonistic networks (GANs).</p><p><strong>Material and methods: </strong>The dataset includes 406 GCL images of 76 eyes with glaucoma and progression, recorded by a spectral domain optical coherence tomograph (OCT). The Pix2Pix model, a conditional antagonistic generative network, was used to transform the current GCL images into images representing glaucoma progression. A total of 70% of the samples were used for training and 30% for model testing. The structural similarity coefficient was used to analyze the similarity between the real and generated images, and finally, an expert's opinion was used to assess the originality of the generated images.</p><p><strong>Results: </strong>The synthesized images successfully replicate glaucoma lesion patterns, with good generalizability and reproducibility. The results show a mean structural similarity between 0.76 and 0.78 in the different tests. The test with the expert obtained an accuracy of 57% in distinguishing between real and generated images.</p><p><strong>Conclusions: </strong>The system developed can generate synthetic images of the GCL with a high similarity to the real ones, demonstrating the effectiveness of the model in synthesizing images that represent the evolution of glaucoma.</p>","PeriodicalId":93886,"journal":{"name":"Archivos de la Sociedad Espanola de Oftalmologia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivos de la Sociedad Espanola de Oftalmologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.oftale.2025.10.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The main objective of this study is to develop a tool capable of synthesizing images of the ganglion cell layer (GCL) that simulate glaucoma progression using generative antagonistic networks (GANs).

Material and methods: The dataset includes 406 GCL images of 76 eyes with glaucoma and progression, recorded by a spectral domain optical coherence tomograph (OCT). The Pix2Pix model, a conditional antagonistic generative network, was used to transform the current GCL images into images representing glaucoma progression. A total of 70% of the samples were used for training and 30% for model testing. The structural similarity coefficient was used to analyze the similarity between the real and generated images, and finally, an expert's opinion was used to assess the originality of the generated images.

Results: The synthesized images successfully replicate glaucoma lesion patterns, with good generalizability and reproducibility. The results show a mean structural similarity between 0.76 and 0.78 in the different tests. The test with the expert obtained an accuracy of 57% in distinguishing between real and generated images.

Conclusions: The system developed can generate synthetic images of the GCL with a high similarity to the real ones, demonstrating the effectiveness of the model in synthesizing images that represent the evolution of glaucoma.

用生成对抗网络模拟视网膜神经节细胞层青光眼的进展。
目的:本研究的主要目的是开发一种能够合成神经节细胞层(GCL)图像的工具,该图像可以使用生成拮抗网络(GANs)模拟青光眼的进展。材料和方法:数据集包括76只患有青光眼和进展的眼睛的406张GCL图像,由光谱域光学相干断层扫描(OCT)记录。使用条件拮抗生成网络Pix2Pix模型将当前GCL图像转换为青光眼进展图像。总共70%的样本用于训练,30%用于模型测试。利用结构相似系数分析真实图像与生成图像的相似度,最后利用专家意见评价生成图像的独创性。结果:合成图像成功地复制了青光眼病变模式,具有良好的概括性和重复性。结果表明,不同试验的平均结构相似度在0.76 ~ 0.78之间。专家的测试在区分真实图像和生成图像方面获得了57%的准确率。结论:所开发的系统能够生成与真实图像高度相似的GCL合成图像,表明该模型在合成代表青光眼演变的图像方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信