Bio-inspired rational design of multiscale topographical interfaces: pansy petal replicas as high-fidelity SERS platforms for single-cell analysis.

IF 5.7
M Barshutina, Z Bochkova, I Zavidovskiy, S Barshutin, D Yakubovsky, V Solovei, A Baizhumanov, G Maksimov, A Arsenin, V Volkov, N Brazhe, S Novikov
{"title":"Bio-inspired rational design of multiscale topographical interfaces: pansy petal replicas as high-fidelity SERS platforms for single-cell analysis.","authors":"M Barshutina, Z Bochkova, I Zavidovskiy, S Barshutin, D Yakubovsky, V Solovei, A Baizhumanov, G Maksimov, A Arsenin, V Volkov, N Brazhe, S Novikov","doi":"10.1039/d5tb01784j","DOIUrl":null,"url":null,"abstract":"<p><p>Engineering biointerfaces that provide both robust cell capture and optimal signal enhancement is a central challenge in the development of materials for cellular diagnostics. Conventional top-down fabrication methods are often complex and costly, limiting their widespread application. Here, we introduce a bio-inspired rational design strategy for creating high-performance SERS platforms for single-cell analysis. By developing a quantitative image analysis methodology, we define a surface complexity coefficient, <i>α</i>, which serves as a predictive metric for the cell-adhesion capacity of a given topography. We demonstrate that pansy petal replicas, identified through this strategy, possess a unique multiscale architecture ideal for erythrocyte analysis. These interfaces exhibit a synergistic interplay between high submicron complexity (<i>α</i> > 20) for robust cell immobilization and cell-conformable micron-scale semi-cavities (8-10 μm) that maximize the interaction area with plasmonic Au nanoparticles (∼30 nm). This optimized topography results in a 2- to 7-fold enhancement of SERS signals from individual erythrocytes compared to other floral-templated substrates. This work not only provides a scalable and cost-effective manufacturing route for advanced SERS materials but also establishes a quantitative framework for designing next-generation biointerfaces for a host of diagnostic and biomedical applications.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb01784j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering biointerfaces that provide both robust cell capture and optimal signal enhancement is a central challenge in the development of materials for cellular diagnostics. Conventional top-down fabrication methods are often complex and costly, limiting their widespread application. Here, we introduce a bio-inspired rational design strategy for creating high-performance SERS platforms for single-cell analysis. By developing a quantitative image analysis methodology, we define a surface complexity coefficient, α, which serves as a predictive metric for the cell-adhesion capacity of a given topography. We demonstrate that pansy petal replicas, identified through this strategy, possess a unique multiscale architecture ideal for erythrocyte analysis. These interfaces exhibit a synergistic interplay between high submicron complexity (α > 20) for robust cell immobilization and cell-conformable micron-scale semi-cavities (8-10 μm) that maximize the interaction area with plasmonic Au nanoparticles (∼30 nm). This optimized topography results in a 2- to 7-fold enhancement of SERS signals from individual erythrocytes compared to other floral-templated substrates. This work not only provides a scalable and cost-effective manufacturing route for advanced SERS materials but also establishes a quantitative framework for designing next-generation biointerfaces for a host of diagnostic and biomedical applications.

多尺度地形界面的仿生理性设计:三色堇花瓣复制品作为单细胞分析的高保真SERS平台。
提供稳健的细胞捕获和最佳信号增强的工程生物界面是细胞诊断材料开发中的核心挑战。传统的自上而下的制造方法往往复杂且昂贵,限制了它们的广泛应用。在这里,我们介绍了一种生物启发的理性设计策略,用于创建用于单细胞分析的高性能SERS平台。通过开发定量图像分析方法,我们定义了表面复杂性系数α,作为给定地形的细胞粘附能力的预测指标。我们证明,通过这种策略确定的三色堇花瓣复制品具有独特的多尺度结构,适合红细胞分析。这些界面在高亚微米复杂性(α bbb20)和细胞符合的微米级半腔(8-10 μm)之间表现出协同相互作用,从而使与等离子体Au纳米颗粒(~ 30 nm)的相互作用面积最大化。与其他花卉模板相比,这种优化的地形导致单个红细胞的SERS信号增强2至7倍。这项工作不仅为先进的SERS材料提供了可扩展和具有成本效益的制造路线,而且为设计用于诊断和生物医学应用的下一代生物界面建立了定量框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信