Enhancing spatial perception in robot-assisted minimally invasive surgery with edge-preserving depth estimation and pose tracking.

IF 1.8 3区 医学 Q2 SURGERY
Bo Guan, Jianchang Zhao, Bo Yi, Jianmin Li
{"title":"Enhancing spatial perception in robot-assisted minimally invasive surgery with edge-preserving depth estimation and pose tracking.","authors":"Bo Guan, Jianchang Zhao, Bo Yi, Jianmin Li","doi":"10.1186/s12893-025-03198-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Enhancing the safety of robot-assisted minimally invasive surgery (RAMIS) is critically dependent on improving the robot's spatial understanding of the surgical scene. However, the quality of laparoscopic images is often negatively affected by factors such as uneven lighting, blurred textures, and occlusions, all of which can interfere with the accurate acquisition of depth information.</p><p><strong>Methods: </strong>To address these challenges, we develop a depth estimation and pose tracking method that incorporates a dual-stream Transformer stereo matching network and a vision-based tracking technique.</p><p><strong>Results: </strong>Experimental results indicate that the proposed method can effectively maintain the boundary information of anatomical structures and demonstrate better performance in the robustness of laparoscope pose tracking.</p><p><strong>Conclusions: </strong>This paper presents a robotic-assisted minimally invasive surgery navigation framework that achieves accurate scene depth estimation and pose tracking, thereby enhancing the robot's spatial understanding of the surgical environment.</p>","PeriodicalId":49229,"journal":{"name":"BMC Surgery","volume":"25 1","pages":"455"},"PeriodicalIF":1.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12893-025-03198-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Enhancing the safety of robot-assisted minimally invasive surgery (RAMIS) is critically dependent on improving the robot's spatial understanding of the surgical scene. However, the quality of laparoscopic images is often negatively affected by factors such as uneven lighting, blurred textures, and occlusions, all of which can interfere with the accurate acquisition of depth information.

Methods: To address these challenges, we develop a depth estimation and pose tracking method that incorporates a dual-stream Transformer stereo matching network and a vision-based tracking technique.

Results: Experimental results indicate that the proposed method can effectively maintain the boundary information of anatomical structures and demonstrate better performance in the robustness of laparoscope pose tracking.

Conclusions: This paper presents a robotic-assisted minimally invasive surgery navigation framework that achieves accurate scene depth estimation and pose tracking, thereby enhancing the robot's spatial understanding of the surgical environment.

基于边缘保持深度估计和姿态跟踪的机器人辅助微创手术空间感知。
背景:提高机器人辅助微创手术(RAMIS)的安全性关键取决于提高机器人对手术场景的空间理解。然而,腹腔镜图像的质量经常受到诸如光照不均匀、纹理模糊、遮挡等因素的负面影响,这些因素都会干扰深度信息的准确获取。为了解决这些挑战,我们开发了一种深度估计和姿态跟踪方法,该方法结合了双流Transformer立体匹配网络和基于视觉的跟踪技术。结果:实验结果表明,该方法能有效保持解剖结构的边界信息,具有较好的腹腔镜姿态跟踪鲁棒性。结论:本文提出了一种机器人辅助微创手术导航框架,实现了准确的场景深度估计和姿态跟踪,从而增强了机器人对手术环境的空间理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Surgery
BMC Surgery SURGERY-
CiteScore
2.90
自引率
5.30%
发文量
391
审稿时长
58 days
期刊介绍: BMC Surgery is an open access, peer-reviewed journal that considers articles on surgical research, training, and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信