Devika Tripathi, Vivek Kumar Gupta, Prashant Pandey, P S Rajinikanth
{"title":"Metabolic Insights into Drug Absorption: Unveiling Piperine's Transformative Bioenhancing Potential.","authors":"Devika Tripathi, Vivek Kumar Gupta, Prashant Pandey, P S Rajinikanth","doi":"10.1007/s11095-025-03920-5","DOIUrl":null,"url":null,"abstract":"<p><p>The oral bioavailability of drugs is often limited by metabolic barriers, including enzymatic degradation and active efflux processes in the gastrointestinal tract. Piperine, a pungent alkaloid found in black pepper (Piper nigrum), has garnered significant interest as a natural bioenhancer due to its multifaceted ability to inhibit cytochrome P450 enzymes, particularly CYP3A4, and efflux transporters such as P-glycoprotein (P-gp). These actions result in enhanced intestinal absorption and prolonged systemic retention of various therapeutic agents. Additionally, Piperine modulates intestinal permeability and alters the pharmacokinetics of drugs by interfering with first-pass metabolism. Recent developments in nanotechnology have led to innovative formulation strategies, such as nanoemulsions, liposomes, and self-emulsifying drug delivery systems, which further enhance Piperine's solubility, stability, and efficacy. However, despite its promising bioenhancing effects, Piperine exhibits limitations such as poor water solubility, dose-dependent toxicity, reproductive and hepatic concerns, and the potential for significant drug-drug interactions. This review critically examines the mechanistic pathways, formulation advances, pharmacological roles, safety issues, and clinical prospects of Piperine. Furthermore, it emphasizes the need for rigorous clinical trials and regulatory evaluation to validate Piperine's use in pharmaceutical applications. Overall, Piperine represents a potent, yet cautiously applicable, tool in modern drug delivery strategies.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03920-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The oral bioavailability of drugs is often limited by metabolic barriers, including enzymatic degradation and active efflux processes in the gastrointestinal tract. Piperine, a pungent alkaloid found in black pepper (Piper nigrum), has garnered significant interest as a natural bioenhancer due to its multifaceted ability to inhibit cytochrome P450 enzymes, particularly CYP3A4, and efflux transporters such as P-glycoprotein (P-gp). These actions result in enhanced intestinal absorption and prolonged systemic retention of various therapeutic agents. Additionally, Piperine modulates intestinal permeability and alters the pharmacokinetics of drugs by interfering with first-pass metabolism. Recent developments in nanotechnology have led to innovative formulation strategies, such as nanoemulsions, liposomes, and self-emulsifying drug delivery systems, which further enhance Piperine's solubility, stability, and efficacy. However, despite its promising bioenhancing effects, Piperine exhibits limitations such as poor water solubility, dose-dependent toxicity, reproductive and hepatic concerns, and the potential for significant drug-drug interactions. This review critically examines the mechanistic pathways, formulation advances, pharmacological roles, safety issues, and clinical prospects of Piperine. Furthermore, it emphasizes the need for rigorous clinical trials and regulatory evaluation to validate Piperine's use in pharmaceutical applications. Overall, Piperine represents a potent, yet cautiously applicable, tool in modern drug delivery strategies.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.