{"title":"Diversification rates in large-scale moss assemblages along latitudinal and climatic gradients across the world.","authors":"Hong Qian","doi":"10.1016/j.pld.2025.07.002","DOIUrl":null,"url":null,"abstract":"<p><p>Species richness in any area results from the interplay of the processes of speciation, extinction, and dispersal. The relationships between species richness and climate should be considered as an outcome of the effects of climate on speciation, extinction, and dispersal. Diversification rate represents the balance of speciation and extinction rates over time. Here, I explore diversification rates in mosses across geographic and climatic gradients worldwide. Specifically, I investigate latitudinal patterns and climatic associations of the mean diversification rate of mosses at global, hemispheric, and smaller scales. I find that the mean diversification rate of mosses is positively correlated with species richness of mosses, increases with decreasing latitude and increasing mean annual temperature and annual precipitation, and is more strongly associated with mean annual temperature than with annual precipitation. These findings shed light on variation of species richness in mosses across the world. The negative relationship between species richness and latitude and the positive relationship between species richness and mean diversification rate in mosses suggest that higher moss species richness at lower latitudes might have resulted, at least to some degree, from higher moss diversification rates at lower latitudes.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 5","pages":"833-838"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12496529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2025.07.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Species richness in any area results from the interplay of the processes of speciation, extinction, and dispersal. The relationships between species richness and climate should be considered as an outcome of the effects of climate on speciation, extinction, and dispersal. Diversification rate represents the balance of speciation and extinction rates over time. Here, I explore diversification rates in mosses across geographic and climatic gradients worldwide. Specifically, I investigate latitudinal patterns and climatic associations of the mean diversification rate of mosses at global, hemispheric, and smaller scales. I find that the mean diversification rate of mosses is positively correlated with species richness of mosses, increases with decreasing latitude and increasing mean annual temperature and annual precipitation, and is more strongly associated with mean annual temperature than with annual precipitation. These findings shed light on variation of species richness in mosses across the world. The negative relationship between species richness and latitude and the positive relationship between species richness and mean diversification rate in mosses suggest that higher moss species richness at lower latitudes might have resulted, at least to some degree, from higher moss diversification rates at lower latitudes.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry