Grazing management can achieve the reconfiguration of vegetation to combat climate impacts and promote soil carbon sequestration.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Plant Diversity Pub Date : 2024-09-06 eCollection Date: 2025-09-01 DOI:10.1016/j.pld.2024.09.002
Yu-Wen Zhang, Ze-Chen Peng, Sheng-Hua Chang, Zhao-Feng Wang, Lan Li, Duo-Cai Li, Yu-Feng An, Fu-Jiang Hou, Ji-Zhou Ren
{"title":"Grazing management can achieve the reconfiguration of vegetation to combat climate impacts and promote soil carbon sequestration.","authors":"Yu-Wen Zhang, Ze-Chen Peng, Sheng-Hua Chang, Zhao-Feng Wang, Lan Li, Duo-Cai Li, Yu-Feng An, Fu-Jiang Hou, Ji-Zhou Ren","doi":"10.1016/j.pld.2024.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>Climate and grazing have a significant effect on vegetation structure and soil organic carbon (SOC) distribution, particularly in mountain ecosystems that are highly susceptible to climate change. However, we lack a systematic understanding of how vegetation structure reacts to long-term grazing disturbances, as well as the processes that influence SOC distribution. This study uses multiple sets of data spanning 20 years from a typical alpine grassland in the Qilian Mountains to investigate the effects of climate and grazing on various root-type grasses as well as the mechanisms that drive SOC distribution. We found that grazing increases the biomass of annual, biennial and perennial taproots while decreasing that of perennial rhizomes. We also found that various root-type grasses have different responses to climate and grazing. Multiple factors jointly control the variation of SOC content (SOCc), and the variation of SOC stock (SOCs) is mainly explained by the interaction between climate and grazing years. Climate and grazing can directly or indirectly affect SOCc through vegetation, and SOCs are mainly dominated by the direct effects of grazing years and grazing gradients. Grazing gradients and root-type grass biomass have a significant effect on SOC, with little effect from climate factors. Therefore, long-term grazing may affect the root-type grass and further affect SOC distribution through differences in nutrient acquisition ability and reproductive pathways. These findings provide important guidance for regulating soil carbon sequestration potential by varying the proportion of different root-type grass in the community via sowing, livestock configuration, or grazing time.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 5","pages":"793-803"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12496528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.09.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate and grazing have a significant effect on vegetation structure and soil organic carbon (SOC) distribution, particularly in mountain ecosystems that are highly susceptible to climate change. However, we lack a systematic understanding of how vegetation structure reacts to long-term grazing disturbances, as well as the processes that influence SOC distribution. This study uses multiple sets of data spanning 20 years from a typical alpine grassland in the Qilian Mountains to investigate the effects of climate and grazing on various root-type grasses as well as the mechanisms that drive SOC distribution. We found that grazing increases the biomass of annual, biennial and perennial taproots while decreasing that of perennial rhizomes. We also found that various root-type grasses have different responses to climate and grazing. Multiple factors jointly control the variation of SOC content (SOCc), and the variation of SOC stock (SOCs) is mainly explained by the interaction between climate and grazing years. Climate and grazing can directly or indirectly affect SOCc through vegetation, and SOCs are mainly dominated by the direct effects of grazing years and grazing gradients. Grazing gradients and root-type grass biomass have a significant effect on SOC, with little effect from climate factors. Therefore, long-term grazing may affect the root-type grass and further affect SOC distribution through differences in nutrient acquisition ability and reproductive pathways. These findings provide important guidance for regulating soil carbon sequestration potential by varying the proportion of different root-type grass in the community via sowing, livestock configuration, or grazing time.

Abstract Image

Abstract Image

Abstract Image

放牧管理可以实现植被的重新配置,以应对气候影响,促进土壤固碳。
气候和放牧对植被结构和土壤有机碳(SOC)分布有显著影响,特别是在对气候变化高度敏感的山地生态系统中。然而,我们对植被结构对长期放牧干扰的反应以及影响有机碳分布的过程缺乏系统的了解。本研究利用祁连山典型高寒草地20年的多组数据,探讨了气候和放牧对不同根型牧草的影响,以及土壤有机碳分布的驱动机制。放牧增加了一年生、二年生和多年生主根的生物量,减少了多年生根茎的生物量。不同根型禾草对气候和放牧有不同的响应。土壤有机碳含量(SOC)的变化受多种因素共同控制,土壤有机碳储量(SOC)的变化主要由气候与放牧年份的相互作用来解释。气候和放牧可通过植被直接或间接影响土壤碳含量,土壤碳含量主要受放牧年限和放牧梯度的直接影响。放牧梯度和根型草生物量对土壤有机碳的影响显著,气候因子对土壤有机碳的影响较小。因此,长期放牧可能通过养分获取能力和繁殖途径的差异影响根型草的有机碳分布。这些研究结果为通过播种、牲畜配置或放牧时间改变不同根型草在群落中的比例来调节土壤固碳潜力提供了重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Diversity
Plant Diversity Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍: Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that advance our understanding of the past and current distribution of plants, contribute to the development of more phylogenetically accurate taxonomic classifications, present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists. While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance. Fields covered by the journal include: plant systematics and taxonomy- evolutionary developmental biology- reproductive biology- phylo- and biogeography- evolutionary ecology- population biology- conservation biology- palaeobotany- molecular evolution- comparative and evolutionary genomics- physiology- biochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信