Zhao-Yang Jing, Ren-Gang Zhang, Yang Liu, Ke-Guang Cheng, De-Tuan Liu, Heng Shu, Jiali Kong, Zhong-Hua Liu, Yong-Peng Ma, Ping-Li Liu
{"title":"Genomic insights into the evolutionary history and conservation of the living fossil <i>Tetracentron sinense</i>.","authors":"Zhao-Yang Jing, Ren-Gang Zhang, Yang Liu, Ke-Guang Cheng, De-Tuan Liu, Heng Shu, Jiali Kong, Zhong-Hua Liu, Yong-Peng Ma, Ping-Li Liu","doi":"10.1016/j.pld.2025.05.008","DOIUrl":null,"url":null,"abstract":"<p><p><i>Tetracentron sinense</i> is a 'living fossil' tree in East Asia. Understanding how this 'living fossil' responds to climate change and adapts to local environments is critical for its conservation. Here, we used re-sequenced genomes to clarify the evolutionary history and adaptive potential of <i>T</i>. <i>sinense</i>. We identified six divergent lineages in <i>T. sinense</i>: three lineages from southwestern China (Yunnan Province) and three lineages from the central subtropical region of China. Additionally, we detected hybridization events between some adjacent lineages. Demographic analysis revealed that over the past 10,000 years the effective population size (<i>Ne</i>) of three <i>T. sinense</i> lineages (i.e., NORTH, SWEST, and YNWEST) increased after their last bottleneck and then remained stable, whereas that of the remaining three lineages (i.e., YSEAST, YC, and EAST) declined steadily. The decline in effective population size in the Yunnan lineages aligned well with the decrease in genome-wide diversity and a significant increase in the frequency of runs of homozygosity. Deleterious variants and positively selected sites were involved in the evolution of different lineages. Further, genotype-environment association (GEA) analyses indicated adaptation to temperature- and precipitation-related factors. Genomic offset analyses found the most vulnerable populations, while SC and SC-yad were predicted to better handle extreme changes. Our findings provide insights into the evolutionary history and conservation of <i>T. sinense</i> and enhance our understanding of the evolution of living fossil species.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 5","pages":"759-771"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12496534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2025.05.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tetracentron sinense is a 'living fossil' tree in East Asia. Understanding how this 'living fossil' responds to climate change and adapts to local environments is critical for its conservation. Here, we used re-sequenced genomes to clarify the evolutionary history and adaptive potential of T. sinense. We identified six divergent lineages in T. sinense: three lineages from southwestern China (Yunnan Province) and three lineages from the central subtropical region of China. Additionally, we detected hybridization events between some adjacent lineages. Demographic analysis revealed that over the past 10,000 years the effective population size (Ne) of three T. sinense lineages (i.e., NORTH, SWEST, and YNWEST) increased after their last bottleneck and then remained stable, whereas that of the remaining three lineages (i.e., YSEAST, YC, and EAST) declined steadily. The decline in effective population size in the Yunnan lineages aligned well with the decrease in genome-wide diversity and a significant increase in the frequency of runs of homozygosity. Deleterious variants and positively selected sites were involved in the evolution of different lineages. Further, genotype-environment association (GEA) analyses indicated adaptation to temperature- and precipitation-related factors. Genomic offset analyses found the most vulnerable populations, while SC and SC-yad were predicted to better handle extreme changes. Our findings provide insights into the evolutionary history and conservation of T. sinense and enhance our understanding of the evolution of living fossil species.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry