Mechanism of salt tolerance ability of novel Desertifilum salkalinema SSAU 7 for sustainable development.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Neetu Maurya, Abhijeet Sharma, Saumya Jaiswal, Shanthy Sundaram
{"title":"Mechanism of salt tolerance ability of novel Desertifilum salkalinema SSAU 7 for sustainable development.","authors":"Neetu Maurya, Abhijeet Sharma, Saumya Jaiswal, Shanthy Sundaram","doi":"10.1007/s10123-025-00731-x","DOIUrl":null,"url":null,"abstract":"<p><p>The long-term sustainability of food production and the usage of agricultural land are seriously threatened by soil salinization. To combat the salinization, the salt-tolerant cyanobacteria can be a potent candidate. However, it is not yet clear how these microbes work to remediate saline soil. Salinity is a global problem, mainly caused by higher evaporation rate, low rainfall, seawater intrusion into freshwater, overuse of chemical fertilizers, etc. This study examined the effect of various salt concentrations on Desertifilum salkalinema SSAU 7 (SSAU 7), which is isolated from the river Ganges, Prayagraj, India. This study examined the tolerance of microbes by analysing the chlorophyll-a, carotenoid, carbohydrate, and photosynthetic activity. It also includes the activity of trehalose and antioxidants, for the mechanism involved in the tolerance and providing new insights that will help the development of cyanobacteria bio-stimulants capable of ameliorating the adverse effects of salinity. The findings revealed that the strain SSAU 7 has the ability to survive up to 20 gL<sup>-1</sup> salt concentrations efficiently. The study showed that the halotolerant cyanobacterium can not only survive at high salt concentration but also it can help in Cicer arietinum (chickpea) plant growth by secreting Indole acetic acid. With increased germination percentage of seed, stem, and root length, SSAU 7 clearly had a good impact on plant growth. These results highlight how cyanobacteria enormously combat salt stress efficiently and can also promote the production of crops while reducing the negative impact of agrochemicals on the environment.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00731-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The long-term sustainability of food production and the usage of agricultural land are seriously threatened by soil salinization. To combat the salinization, the salt-tolerant cyanobacteria can be a potent candidate. However, it is not yet clear how these microbes work to remediate saline soil. Salinity is a global problem, mainly caused by higher evaporation rate, low rainfall, seawater intrusion into freshwater, overuse of chemical fertilizers, etc. This study examined the effect of various salt concentrations on Desertifilum salkalinema SSAU 7 (SSAU 7), which is isolated from the river Ganges, Prayagraj, India. This study examined the tolerance of microbes by analysing the chlorophyll-a, carotenoid, carbohydrate, and photosynthetic activity. It also includes the activity of trehalose and antioxidants, for the mechanism involved in the tolerance and providing new insights that will help the development of cyanobacteria bio-stimulants capable of ameliorating the adverse effects of salinity. The findings revealed that the strain SSAU 7 has the ability to survive up to 20 gL-1 salt concentrations efficiently. The study showed that the halotolerant cyanobacterium can not only survive at high salt concentration but also it can help in Cicer arietinum (chickpea) plant growth by secreting Indole acetic acid. With increased germination percentage of seed, stem, and root length, SSAU 7 clearly had a good impact on plant growth. These results highlight how cyanobacteria enormously combat salt stress efficiently and can also promote the production of crops while reducing the negative impact of agrochemicals on the environment.

新型盐碱地荒漠菌SSAU 7耐盐能力的可持续发展机制
土壤盐渍化严重威胁着粮食生产的长期可持续性和农业用地的利用。为了对抗盐碱化,耐盐蓝藻可能是一个强有力的候选人。然而,目前还不清楚这些微生物是如何修复盐碱地的。盐度是一个全球性的问题,主要是由蒸发速率高、降雨量少、海水侵入淡水、化肥过度使用等引起的。本研究考察了不同盐浓度对印度恒河流域荒漠菌SSAU 7 (SSAU 7)的影响。本研究通过分析叶绿素-a、类胡萝卜素、碳水化合物和光合活性来检测微生物的耐受性。它还包括海藻糖和抗氧化剂的活性,对于参与耐受性的机制,并提供新的见解,这将有助于开发能够改善盐度不利影响的蓝藻生物刺激剂。结果表明,菌株SSAU 7具有在20 gL-1盐浓度下有效生存的能力。研究表明,耐盐蓝藻不仅能在高盐环境下存活,还能通过分泌吲哚乙酸促进鹰嘴豆植物生长。随着种子发芽率、茎长和根长的增加,SSAU 7明显对植物生长有良好的影响。这些结果强调了蓝藻如何有效地对抗盐胁迫,并能促进作物生产,同时减少农用化学品对环境的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信