Preliminary qualification of a machine learning-based assessment of the tumor immune infiltrate as a predictor of outcome in patients with hepatocellular carcinoma treated with atezolizumab plus bevacizumab.

IF 10.6 1区 医学 Q1 IMMUNOLOGY
Bernhard Scheiner, Pasquale Lombardi, Antonio D'Alessio, Gwangil Kim, Masoud Tafavvoghi, Oleksandr Petrenko, Robert D Goldin, Claudia A M Fulgenzi, Aria Torkpour, Lorenz Balcar, Francesco A Mauri, Katharina Pomej, Vera Himmelsbach, Maryam Barsch, Ciro Celsa, Giuseppe Cabibbo, Jaekyung Cheon, Anja Krall, Florian Hucke, Luca Di Tommaso, Monica Bernasconi, Lorenza Rimassa, Adel Samson, Bernardo Stefanini, Behrang Mozayani, Michael Trauner, Carolin Lackner, Rudolf Stauber, Francesco Vasuri, Fabio Piscaglia, Bertram Bengsch, Fabian Finkelmeier, Markus Peck-Radosavljevic, Lill-Tove Rasmussen Busund, Teresa Marafioti, Mohammad Rahbari, Mathias Heikenwalder, Matthias Pinter, Hong Jae Chon, Mehrdad Rakaee, David J Pinato
{"title":"Preliminary qualification of a machine learning-based assessment of the tumor immune infiltrate as a predictor of outcome in patients with hepatocellular carcinoma treated with atezolizumab plus bevacizumab.","authors":"Bernhard Scheiner, Pasquale Lombardi, Antonio D'Alessio, Gwangil Kim, Masoud Tafavvoghi, Oleksandr Petrenko, Robert D Goldin, Claudia A M Fulgenzi, Aria Torkpour, Lorenz Balcar, Francesco A Mauri, Katharina Pomej, Vera Himmelsbach, Maryam Barsch, Ciro Celsa, Giuseppe Cabibbo, Jaekyung Cheon, Anja Krall, Florian Hucke, Luca Di Tommaso, Monica Bernasconi, Lorenza Rimassa, Adel Samson, Bernardo Stefanini, Behrang Mozayani, Michael Trauner, Carolin Lackner, Rudolf Stauber, Francesco Vasuri, Fabio Piscaglia, Bertram Bengsch, Fabian Finkelmeier, Markus Peck-Radosavljevic, Lill-Tove Rasmussen Busund, Teresa Marafioti, Mohammad Rahbari, Mathias Heikenwalder, Matthias Pinter, Hong Jae Chon, Mehrdad Rakaee, David J Pinato","doi":"10.1136/jitc-2024-010975","DOIUrl":null,"url":null,"abstract":"<p><p>Spontaneously immunogenic hepatocellular carcinoma (HCC), identified by a dense immune cell infiltrate (ICI), responds better to immunotherapy, although no validated biomarker exists to identify these cases. We used machine learning (ML) to quantify ICI from standard H&E-stained tissue and evaluated its correlation with characteristics of the tumor microenvironment (TME) and clinical outcome from atezolizumab plus bevacizumab (A+B).We therefore employed a supervised ML algorithm on 102 pretreatment H&E slides collected from patients treated with A+B. We quantified tumor, stroma and immune cell counts/mm<sup>2</sup> and dichotomized patients into ICI high and ICI low for clinicopathologic analysis. We correlated ICI signature with characteristics of the T-cell infiltrate (CD4+, FOXP3+, CD8+, PD1+) using multiplex immunohistochemistry in 62 resected specimens and evaluated gene expression profiles by bulk RNA sequencing in 44 samples.All patients treated with A+B were Child-Pugh A and received first-line A+B treatment for Barcelona Clinic Liver Cancer Stage C HCC (n=77, 75.5%) on a background of viral (n=53, 52%) and non-viral (n=49, 48%) liver disease. Median ICI density was 429.9 (IQR: 194.6-666.7) cells/mm<sup>2</sup> Two-thirds of patients (n=67, 65.7%) had ICI counts≥236/mm<sup>2</sup>, derived as the optimal prognostic cut-off (ICI-high). Baseline characteristics, including disease etiology, liver function, performance status, stage, prior therapy and alpha-fetoprotein (AFP) levels, were comparable between ICI-high versus ICI-low patients. Patients with ICI-high demonstrated a significantly longer overall survival (OS) compared with ICI-low: 20.9 (95% CI: 13.8 to 27.9) versus 15.3 (95% CI: 6.0 to 24.6 months, p=0.026). Multivariable analyses demonstrated ICI-low status to remain as an independent prognostic parameter (adjusted HR (aHR): 2.02, 95% CI: 1.03 to 3.96) alongside AFP concentration (per 100 ng/mL: aHR 1.00, 95% CI: 1.00 to 1.00). ICI-high tumors were characterized by STC1 underexpression and enrichment in proinflammatory gene expression sets previously associated with response to immunotherapy. The proinflammatory environment identified by ICI status was not exclusively mediated by T-cell phenotype polarization as shown by a lack of correlation between ICI-high status and CD4+, CD4+FOXP3+, CD8+ and CD8+PD1+ T-cell density.In conclusion, we propose a ML-based algorithm to identify proinflamed HCC TMEs bearing a positive correlation with the patient's OS. Digital characterization of the TME should be validated as a tool to improve precision delivery of anticancer immunotherapy.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 10","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-010975","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spontaneously immunogenic hepatocellular carcinoma (HCC), identified by a dense immune cell infiltrate (ICI), responds better to immunotherapy, although no validated biomarker exists to identify these cases. We used machine learning (ML) to quantify ICI from standard H&E-stained tissue and evaluated its correlation with characteristics of the tumor microenvironment (TME) and clinical outcome from atezolizumab plus bevacizumab (A+B).We therefore employed a supervised ML algorithm on 102 pretreatment H&E slides collected from patients treated with A+B. We quantified tumor, stroma and immune cell counts/mm2 and dichotomized patients into ICI high and ICI low for clinicopathologic analysis. We correlated ICI signature with characteristics of the T-cell infiltrate (CD4+, FOXP3+, CD8+, PD1+) using multiplex immunohistochemistry in 62 resected specimens and evaluated gene expression profiles by bulk RNA sequencing in 44 samples.All patients treated with A+B were Child-Pugh A and received first-line A+B treatment for Barcelona Clinic Liver Cancer Stage C HCC (n=77, 75.5%) on a background of viral (n=53, 52%) and non-viral (n=49, 48%) liver disease. Median ICI density was 429.9 (IQR: 194.6-666.7) cells/mm2 Two-thirds of patients (n=67, 65.7%) had ICI counts≥236/mm2, derived as the optimal prognostic cut-off (ICI-high). Baseline characteristics, including disease etiology, liver function, performance status, stage, prior therapy and alpha-fetoprotein (AFP) levels, were comparable between ICI-high versus ICI-low patients. Patients with ICI-high demonstrated a significantly longer overall survival (OS) compared with ICI-low: 20.9 (95% CI: 13.8 to 27.9) versus 15.3 (95% CI: 6.0 to 24.6 months, p=0.026). Multivariable analyses demonstrated ICI-low status to remain as an independent prognostic parameter (adjusted HR (aHR): 2.02, 95% CI: 1.03 to 3.96) alongside AFP concentration (per 100 ng/mL: aHR 1.00, 95% CI: 1.00 to 1.00). ICI-high tumors were characterized by STC1 underexpression and enrichment in proinflammatory gene expression sets previously associated with response to immunotherapy. The proinflammatory environment identified by ICI status was not exclusively mediated by T-cell phenotype polarization as shown by a lack of correlation between ICI-high status and CD4+, CD4+FOXP3+, CD8+ and CD8+PD1+ T-cell density.In conclusion, we propose a ML-based algorithm to identify proinflamed HCC TMEs bearing a positive correlation with the patient's OS. Digital characterization of the TME should be validated as a tool to improve precision delivery of anticancer immunotherapy.

Abstract Image

Abstract Image

基于机器学习的肿瘤免疫浸润评估作为阿特唑单抗加贝伐单抗治疗肝细胞癌患者预后的预测因子的初步鉴定。
自发免疫原性肝细胞癌(HCC),通过密集的免疫细胞浸润(ICI)识别,对免疫治疗反应更好,尽管没有有效的生物标志物来识别这些病例。我们使用机器学习(ML)从标准h&e染色组织中量化ICI,并评估其与atezolizumab加贝伐单抗(A+B)的肿瘤微环境(TME)特征和临床结果的相关性。因此,我们对102张a +B治疗患者的H&E切片采用了监督ML算法。我们量化肿瘤、基质和免疫细胞计数/mm2,并将患者分为ICI高和ICI低进行临床病理分析。我们使用多重免疫组织化学方法将62个切除标本的ICI特征与t细胞浸润特征(CD4+、FOXP3+、CD8+、PD1+)联系起来,并通过大量RNA测序评估44个样本的基因表达谱。所有接受A+B治疗的患者均为Child-Pugh A,接受一线A+B治疗的巴塞罗那临床肝癌C期HCC患者(n=77, 75.5%),背景为病毒性肝病(n=53, 52%)和非病毒性肝病(n=49, 48%)。中位ICI密度为429.9 (IQR: 194.6-666.7)个细胞/mm2,三分之二的患者(n=67, 65.7%)的ICI计数≥236个/mm2,这是最佳预后分界点(ICI-高)。基线特征,包括疾病病因、肝功能、运动状态、分期、既往治疗和甲胎蛋白(AFP)水平,在ci -高患者和ci -低患者之间具有可比性。与CI值低的患者相比,CI值高的患者表现出更长的总生存期(OS): 20.9个月(95% CI: 13.8至27.9)比15.3个月(95% CI: 6.0至24.6个月,p=0.026)。多变量分析表明,CI-低状态仍然是一个独立的预后参数(调整HR (aHR): 2.02, 95% CI: 1.03至3.96)和AFP浓度(每100 ng/mL: aHR 1.00, 95% CI: 1.00至1.00)。ci -高肿瘤的特征是STC1低表达和促炎基因表达集的富集,这些基因表达集先前与免疫治疗反应相关。ICI高状态与CD4+、CD4+FOXP3+、CD8+和CD8+PD1+ t细胞密度之间缺乏相关性,表明ICI状态所识别的促炎环境并非完全由t细胞表型极化介导。总之,我们提出了一种基于ml的算法来识别与患者OS呈正相关的肝癌TMEs。TME的数字表征应该作为一种工具进行验证,以提高抗癌免疫治疗的精确交付。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal for Immunotherapy of Cancer
Journal for Immunotherapy of Cancer Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
17.70
自引率
4.60%
发文量
522
审稿时长
18 weeks
期刊介绍: The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信