Tumors with microsatellite instability upregulate TREX1 to escape antitumor immunity.

IF 10.6 1区 医学 Q1 IMMUNOLOGY
Journal of Experimental Medicine Pub Date : 2025-12-01 Epub Date: 2025-10-07 DOI:10.1084/jem.20250265
Yan Xu, Zheqi Zhou, Wenzheng Chen, Fei Du, Sanling Huang, Jinhui Qi, Yuwen Zeng, Hao Su, Jiaxin Wang, Chunfu Xiao, Xiaoyu Zhao, Xiaoge Liu, Yang Feng, Chuan-Yun Li, Fan Wang, Zhaofei Liu, Yunjia Zhang, Zhi Peng, Zhaode Bu, Yang-Xin Fu, Ziyu Li, Di Wang, Chuanhui Han
{"title":"Tumors with microsatellite instability upregulate TREX1 to escape antitumor immunity.","authors":"Yan Xu, Zheqi Zhou, Wenzheng Chen, Fei Du, Sanling Huang, Jinhui Qi, Yuwen Zeng, Hao Su, Jiaxin Wang, Chunfu Xiao, Xiaoyu Zhao, Xiaoge Liu, Yang Feng, Chuan-Yun Li, Fan Wang, Zhaofei Liu, Yunjia Zhang, Zhi Peng, Zhaode Bu, Yang-Xin Fu, Ziyu Li, Di Wang, Chuanhui Han","doi":"10.1084/jem.20250265","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, it remains largely unclear how MSI-H/dMMR tumors, despite heightened immune pathway activation and antigenic mutation accumulation, evade immune elimination and promote tumorigenesis. Our study showed that dMMR tumors accumulate cytosolic double-stranded DNA, activating the cGAS-IFN pathway and upregulating DNA-digesting enzyme TREX1. In immunocompetent mice, Trex1 depletion in MSI-H/dMMR tumors abolished tumor formation in a CD8+ T cell-dependent manner, suggesting its critical role in enabling these tumors to evade immune attack. Mechanistically, Trex1 loss amplified tumor-intrinsic cGAS-STING signaling, promoted the activation of CD8+ T cells, and triggered systemic antitumor immunity. Critically, ablating cGAS-STING signaling in MSI-H/dMMR tumors abolished the immune boost from TREX1 deletion, revealing the critical role MSI-H/dMMR tumor-intrinsic cGAS-STING pathway. Furthermore, Trex1 inhibition specifically reduced MSI-H/dMMR tumors growth in vivo, highlighting its clinical potential. Together, we identify the cGAS-STING-TREX1 loop as a key immune escape mechanism in MSI-H/dMMR cancers, suggesting TREX1 inhibition could enhance immunotherapy for these patients.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 12","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20250265","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, it remains largely unclear how MSI-H/dMMR tumors, despite heightened immune pathway activation and antigenic mutation accumulation, evade immune elimination and promote tumorigenesis. Our study showed that dMMR tumors accumulate cytosolic double-stranded DNA, activating the cGAS-IFN pathway and upregulating DNA-digesting enzyme TREX1. In immunocompetent mice, Trex1 depletion in MSI-H/dMMR tumors abolished tumor formation in a CD8+ T cell-dependent manner, suggesting its critical role in enabling these tumors to evade immune attack. Mechanistically, Trex1 loss amplified tumor-intrinsic cGAS-STING signaling, promoted the activation of CD8+ T cells, and triggered systemic antitumor immunity. Critically, ablating cGAS-STING signaling in MSI-H/dMMR tumors abolished the immune boost from TREX1 deletion, revealing the critical role MSI-H/dMMR tumor-intrinsic cGAS-STING pathway. Furthermore, Trex1 inhibition specifically reduced MSI-H/dMMR tumors growth in vivo, highlighting its clinical potential. Together, we identify the cGAS-STING-TREX1 loop as a key immune escape mechanism in MSI-H/dMMR cancers, suggesting TREX1 inhibition could enhance immunotherapy for these patients.

具有微卫星不稳定性的肿瘤上调TREX1以逃避抗肿瘤免疫。
目前,MSI-H/dMMR肿瘤如何在免疫途径激活和抗原突变积累加剧的情况下逃避免疫消除并促进肿瘤发生仍不清楚。我们的研究表明,dMMR肿瘤积累胞质双链DNA,激活cGAS-IFN通路,上调DNA消化酶TREX1。在免疫功能正常的小鼠中,MSI-H/dMMR肿瘤中Trex1的缺失以CD8+ T细胞依赖的方式消除了肿瘤的形成,这表明Trex1在使这些肿瘤逃避免疫攻击中起着关键作用。从机制上讲,Trex1缺失放大了肿瘤固有的cGAS-STING信号,促进了CD8+ T细胞的激活,并触发了全身抗肿瘤免疫。重要的是,MSI-H/dMMR肿瘤中cGAS-STING信号的消融消除了TREX1缺失带来的免疫增强,揭示了MSI-H/dMMR肿瘤固有cGAS-STING通路的关键作用。此外,Trex1抑制特异性地降低了MSI-H/dMMR肿瘤在体内的生长,突出了其临床潜力。总之,我们发现cGAS-STING-TREX1环是MSI-H/dMMR癌症的关键免疫逃逸机制,表明TREX1抑制可以增强这些患者的免疫治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
1.30%
发文量
189
审稿时长
3-8 weeks
期刊介绍: Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field. Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions. Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信