No difference in mean middle cerebral artery blood velocity responses between lower- and upper-body unilateral resistance exercise in untrained individuals.
{"title":"No difference in mean middle cerebral artery blood velocity responses between lower- and upper-body unilateral resistance exercise in untrained individuals.","authors":"Stephanie Korad, Toby Mündel, Blake G Perry","doi":"10.1113/EP092859","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic resistance exercise (RE) produces sinusoidal fluctuations in blood pressure that are mirrored by middle cerebral artery blood velocity (MCAv). However, whether lower- or upper-body RE elicits a differential cerebrovascular response has not yet been examined. We investigated the cerebrovascular response to lower-body RE versus upper-body RE in 15 healthy untrained individuals (12 females and 3 males; mean ± SD; age 25 ± 6 years, height 179 ± 10 cm, weight 71 ± 15 kg and body mass index 24 ± 6 kg/m<sup>2</sup>). Participants completed four sets of 10 paced repetitions (15 repetitions/min) of unilateral leg-extension exercise and unilateral bicep-curl exercise at 60% of predicted one-repetition maximum (leg extension 30 ± 9 kg and bicep curl 7 ± 3 kg). Beat-to-beat blood pressure, bilateral MCAv and partial pressure of end-tidal carbon dioxide were measured throughout. Within-exercise mean arterial blood pressure (MAP) and mean MCAv were averaged across the set. Additionally, zenith, nadir and zenith-to-nadir difference in MAP and mean MCAv for each repetition were averaged across each set. Baseline measures preceding each set were not different for all dependent variables, with no significant interaction differences observed (all p > 0.161). The mean MCAv within exercise decreased across sets (set effect p < 0.001), but MAP did not (p = 0.071). No interaction effects were observed for any dependent variables (all p > 0.06), However, there was a zenith-to-nadir difference in mean MCAv (p = 0.008), although post hoc tests revealed no significant difference between exercises (all p > 0.078). There were no differences in the cerebrovascular and cardiovascular responses to lower- and upper-body RE, with similar sinusoidal fluctuations in MAP and MCAv<sub>mean</sub> present during both exercises.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092859","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic resistance exercise (RE) produces sinusoidal fluctuations in blood pressure that are mirrored by middle cerebral artery blood velocity (MCAv). However, whether lower- or upper-body RE elicits a differential cerebrovascular response has not yet been examined. We investigated the cerebrovascular response to lower-body RE versus upper-body RE in 15 healthy untrained individuals (12 females and 3 males; mean ± SD; age 25 ± 6 years, height 179 ± 10 cm, weight 71 ± 15 kg and body mass index 24 ± 6 kg/m2). Participants completed four sets of 10 paced repetitions (15 repetitions/min) of unilateral leg-extension exercise and unilateral bicep-curl exercise at 60% of predicted one-repetition maximum (leg extension 30 ± 9 kg and bicep curl 7 ± 3 kg). Beat-to-beat blood pressure, bilateral MCAv and partial pressure of end-tidal carbon dioxide were measured throughout. Within-exercise mean arterial blood pressure (MAP) and mean MCAv were averaged across the set. Additionally, zenith, nadir and zenith-to-nadir difference in MAP and mean MCAv for each repetition were averaged across each set. Baseline measures preceding each set were not different for all dependent variables, with no significant interaction differences observed (all p > 0.161). The mean MCAv within exercise decreased across sets (set effect p < 0.001), but MAP did not (p = 0.071). No interaction effects were observed for any dependent variables (all p > 0.06), However, there was a zenith-to-nadir difference in mean MCAv (p = 0.008), although post hoc tests revealed no significant difference between exercises (all p > 0.078). There were no differences in the cerebrovascular and cardiovascular responses to lower- and upper-body RE, with similar sinusoidal fluctuations in MAP and MCAvmean present during both exercises.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.