Development of an ultrahigh affinity, trimeric ACE2 biologic as a universal SARS-CoV-2 antagonist.

IF 5.1 1区 生物学 Q1 BIOLOGY
Juliet Gonzales, Tynan Young, Hyeran Choi, Miso Park, Yead Jewel, Chengcheng Fan, Rahul Purohit, Pamela J Bjorkman, John C Williams
{"title":"Development of an ultrahigh affinity, trimeric ACE2 biologic as a universal SARS-CoV-2 antagonist.","authors":"Juliet Gonzales, Tynan Young, Hyeran Choi, Miso Park, Yead Jewel, Chengcheng Fan, Rahul Purohit, Pamela J Bjorkman, John C Williams","doi":"10.1038/s42003-025-08819-w","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, utilizes membrane-bound, angiotensin-converting enzyme II (ACE2) for internalization and infection. We describe the development of a biologic that takes advantage of the proximity of the N-terminus of bound ACE2 to the three-fold symmetry axis of the spike protein to create an ultrapotent, trivalent ACE2 entry antagonist. Distinct disulfide bonds were added to enhance serum stability and a single point mutation was introduced to eliminate enzymatic activity. Through surface plasmon resonance, pseudovirus neutralization assays, and single-particle cryo-electron microscopy, we show this antagonist binds to and inhibits SARS-CoV-2 variants. We further show the antagonist binds to and inhibits a 2003 SARS-CoV-1 strain. Collectively, structural insight has allowed us to design a universal trivalent antagonist against all variants of SARS-CoV-2 tested, suggesting it will be active against the emergence of future mutants.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1428"},"PeriodicalIF":5.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08819-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, utilizes membrane-bound, angiotensin-converting enzyme II (ACE2) for internalization and infection. We describe the development of a biologic that takes advantage of the proximity of the N-terminus of bound ACE2 to the three-fold symmetry axis of the spike protein to create an ultrapotent, trivalent ACE2 entry antagonist. Distinct disulfide bonds were added to enhance serum stability and a single point mutation was introduced to eliminate enzymatic activity. Through surface plasmon resonance, pseudovirus neutralization assays, and single-particle cryo-electron microscopy, we show this antagonist binds to and inhibits SARS-CoV-2 variants. We further show the antagonist binds to and inhibits a 2003 SARS-CoV-1 strain. Collectively, structural insight has allowed us to design a universal trivalent antagonist against all variants of SARS-CoV-2 tested, suggesting it will be active against the emergence of future mutants.

开发一种具有超高亲和力的三聚体ACE2生物制剂作为通用的SARS-CoV-2拮抗剂。
导致COVID-19大流行的严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)利用膜结合的血管紧张素转换酶II (ACE2)内化和感染。我们描述了一种生物制剂的开发,该生物制剂利用结合ACE2的n端接近刺突蛋白的三重对称轴来创建一种超有效的三价ACE2进入拮抗剂。添加不同的二硫键以增强血清稳定性,并引入单点突变以消除酶活性。通过表面等离子体共振、假病毒中和实验和单粒子冷冻电镜,我们发现这种拮抗剂可以结合并抑制SARS-CoV-2变体。我们进一步证明拮抗剂结合并抑制2003年SARS-CoV-1菌株。总的来说,结构洞察力使我们能够设计出一种通用的三价拮抗剂,针对所有测试的SARS-CoV-2变体,这表明它将对未来突变体的出现具有活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信