Touching Surfaces - Presence of microorganisms on antimicrobial metal surfaces on the International Space Station and in German schools.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Carolin L Krämer, Daniel W Müller, Franca Arndt, Anna Rehm, Bernd Walkenfort, Aisha S Ahmed, Aaron Haben, Alessa Schiele, Alina Auerhammer, Mike Hasenberg, Alessa L Boschert, Ralf Kautenburger, Stefan Leuko, Stefan Janssen, Matthias Maurer, Frank Mücklich, Katharina Siems
{"title":"Touching Surfaces - Presence of microorganisms on antimicrobial metal surfaces on the International Space Station and in German schools.","authors":"Carolin L Krämer, Daniel W Müller, Franca Arndt, Anna Rehm, Bernd Walkenfort, Aisha S Ahmed, Aaron Haben, Alessa Schiele, Alina Auerhammer, Mike Hasenberg, Alessa L Boschert, Ralf Kautenburger, Stefan Leuko, Stefan Janssen, Matthias Maurer, Frank Mücklich, Katharina Siems","doi":"10.1186/s12866-025-04316-6","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms are an integral component of human health on Earth as well as for life on the International Space Station. However, inescapably, fomites in human habitats can serve as crucial niches for opportunistic pathogens. To explore potential countermeasures for the associated infection risk, the Touching Surfaces experiment evaluated antibacterial surfaces as high-touch surfaces on the International Space Station and on Earth. We used copper-based surfaces that integrate chemical antimicrobial properties with topography, thereby creating a metasurface. 16 S rRNA sequencing revealed that most bacteria found were human associated. While no significant distinction was observed between the microbial communities on the reference and antibacterial surfaces, isolation of microorganisms from the surfaces suggests that copper-based nanometer-structured surfaces exhibit enhanced antibacterial efficacy. The antibacterial efficacy of touched surfaces was reduced, as assessed by wet contact killing assays carried out using a methicillin-resistant Staphylococcus aureus (MRSA) isolate. The simplicity of implementing the surfaces allowed for straightforward testing of surfaces in both space and on Earth.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"631"},"PeriodicalIF":4.2000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-04316-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microorganisms are an integral component of human health on Earth as well as for life on the International Space Station. However, inescapably, fomites in human habitats can serve as crucial niches for opportunistic pathogens. To explore potential countermeasures for the associated infection risk, the Touching Surfaces experiment evaluated antibacterial surfaces as high-touch surfaces on the International Space Station and on Earth. We used copper-based surfaces that integrate chemical antimicrobial properties with topography, thereby creating a metasurface. 16 S rRNA sequencing revealed that most bacteria found were human associated. While no significant distinction was observed between the microbial communities on the reference and antibacterial surfaces, isolation of microorganisms from the surfaces suggests that copper-based nanometer-structured surfaces exhibit enhanced antibacterial efficacy. The antibacterial efficacy of touched surfaces was reduced, as assessed by wet contact killing assays carried out using a methicillin-resistant Staphylococcus aureus (MRSA) isolate. The simplicity of implementing the surfaces allowed for straightforward testing of surfaces in both space and on Earth.

接触表面-微生物在国际空间站和德国学校的抗微生物金属表面的存在。
微生物是地球上人类健康的一个组成部分,也是国际空间站生命的一个组成部分。然而,不可避免的是,人类栖息地中的污染物可以作为机会性病原体的关键生态位。为了探索相关感染风险的潜在对策,接触表面实验评估了国际空间站和地球上的抗菌表面作为高接触表面。我们使用了铜基表面,将化学抗菌特性与地形结合起来,从而创造了一个超表面。16s rRNA测序结果显示,发现的大多数细菌与人类相关。虽然参考表面和抗菌表面上的微生物群落没有明显区别,但从表面上分离出的微生物表明,铜基纳米结构表面具有增强的抗菌功效。使用耐甲氧西林金黄色葡萄球菌(MRSA)分离物进行的湿接触杀死试验评估了接触表面的抗菌效果降低。实现表面的简单性允许在空间和地球上对表面进行直接测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信