{"title":"Filamentous fungal-mediated melanin nanoparticles for heavy metal detoxification via bioadsorption: a sustainable approach","authors":"Michael Helan Soundra Rani, Sivakumar Sujith","doi":"10.1007/s10532-025-10198-2","DOIUrl":null,"url":null,"abstract":"<div><p>The eradication of heavy metal contamination has emerged as a paramount objective in preserving and conserving global water resources. The present study highlights the potential of halophilic fungal melanin derived from <i>Curvularia lunata</i> as an eco-friendly, cost-effective, highly stable, and efficient biosorbent for removing toxic heavy metals. UV and FTIR spectroscopy characterization confirmed the presence of functional groups typical of eumelanin. Particle size analysis revealed a notable reduction in size from unmodified melanin (54.22–87.94 nm) to melanin nanoparticles (MNPs) (22.74–26.41 nm), indicating improved surface area for adsorption. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) data further validated the superior adsorption capabilities of MNPs compared to unmodified melanin. Specifically, the MNPs exhibited a 100% removal efficiency of over 18 metals out of 24 at a concentration of 0.15 mg/L and at pH 7, surpassing the performance of native melanin. X-ray photoelectron spectroscopy (XPS) was applied to specify the elemental composition of the solid surfaces and the chemical forms of adsorbed metals. Ultrasound-assisted extraction (UAE) significantly enhances adsorption efficacy by facilitating better dispersion and generating a higher surface area, thereby increasing the Number of active binding sites available on MNPs for heavy metal chelation. This mycoremediation-based approach presents a scalable and industrially adaptable solution for water detoxification, offering an advantageous alternative to conventional high-performance membrane technologies with minimal process modifications.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10198-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The eradication of heavy metal contamination has emerged as a paramount objective in preserving and conserving global water resources. The present study highlights the potential of halophilic fungal melanin derived from Curvularia lunata as an eco-friendly, cost-effective, highly stable, and efficient biosorbent for removing toxic heavy metals. UV and FTIR spectroscopy characterization confirmed the presence of functional groups typical of eumelanin. Particle size analysis revealed a notable reduction in size from unmodified melanin (54.22–87.94 nm) to melanin nanoparticles (MNPs) (22.74–26.41 nm), indicating improved surface area for adsorption. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) data further validated the superior adsorption capabilities of MNPs compared to unmodified melanin. Specifically, the MNPs exhibited a 100% removal efficiency of over 18 metals out of 24 at a concentration of 0.15 mg/L and at pH 7, surpassing the performance of native melanin. X-ray photoelectron spectroscopy (XPS) was applied to specify the elemental composition of the solid surfaces and the chemical forms of adsorbed metals. Ultrasound-assisted extraction (UAE) significantly enhances adsorption efficacy by facilitating better dispersion and generating a higher surface area, thereby increasing the Number of active binding sites available on MNPs for heavy metal chelation. This mycoremediation-based approach presents a scalable and industrially adaptable solution for water detoxification, offering an advantageous alternative to conventional high-performance membrane technologies with minimal process modifications.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.