Environmental remediation of dual-model-pollutants in multi-water sources via controlled pyrolysis of ZIF-67-derived Co3O4/g-CN heterojunction: Real-world photocatalytic application.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Dong-Eun Lee, Azam Khan, Ahmad Husain, Mohtaram Danish, Wan-Kuen Jo
{"title":"Environmental remediation of dual-model-pollutants in multi-water sources via controlled pyrolysis of ZIF-67-derived Co<sub>3</sub>O<sub>4</sub>/g-CN heterojunction: Real-world photocatalytic application.","authors":"Dong-Eun Lee, Azam Khan, Ahmad Husain, Mohtaram Danish, Wan-Kuen Jo","doi":"10.1016/j.envres.2025.123005","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a novel zeolitic imidazolate framework (ZIF-67)-derived Co<sub>3</sub>O<sub>4</sub> and graphitic carbon nitride (g-CN) based nanohybrid heterojunction (Co<sub>3</sub>O<sub>4</sub>/g-CN) was synthesized through a controlled thermal treatment process for highly efficient and stable photocatalytic environmental remediation in real-world water matrices. The thermal conversion of ZIF-67 into highly porous Co<sub>3</sub>O<sub>4</sub> with retained structural integrity, coupled with the strategic incorporation of g-CN, facilitated the formation of a heterojunction that significantly enhanced charge carrier separation and mobility. Under mineralized water conditions, the Co<sub>3</sub>O<sub>4</sub>/g-CN (1:5) nanohybrid achieved outstanding photocatalytic degradation efficiencies of 99 % for dinoseb and 96 % for methyl orange within 75 min, with apparent rate constants of 0.0389 min<sup>-1</sup> and 0.0311 min<sup>-1</sup>, respectively, an order of magnitude higher than the individual components. Moreover, mineralization efficiencies reached 73 % for dinoseb and 69 % for methyl orange within 150 min, as verified by gas chromatography-mass spectrometry analysis of transformation products. Structural and morphological stability, after repeated photocatalytic cyclic runs, was confirmed through X-ray diffraction and microscopic analyses, underscoring the robust nature of the nanohybrid. Lastly, we designed a type-II mechanistic heterojunction system, accountable for enhanced photocatalytic performance over Co<sub>3</sub>O<sub>4</sub>/g-CN nanohybrid. Ultimately, the synergistic interaction within the heterojunction sets a benchmark for advancing sustainable water treatment technologies, offering a scalable and effective solution to environmental pollution.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"123005"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.123005","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel zeolitic imidazolate framework (ZIF-67)-derived Co3O4 and graphitic carbon nitride (g-CN) based nanohybrid heterojunction (Co3O4/g-CN) was synthesized through a controlled thermal treatment process for highly efficient and stable photocatalytic environmental remediation in real-world water matrices. The thermal conversion of ZIF-67 into highly porous Co3O4 with retained structural integrity, coupled with the strategic incorporation of g-CN, facilitated the formation of a heterojunction that significantly enhanced charge carrier separation and mobility. Under mineralized water conditions, the Co3O4/g-CN (1:5) nanohybrid achieved outstanding photocatalytic degradation efficiencies of 99 % for dinoseb and 96 % for methyl orange within 75 min, with apparent rate constants of 0.0389 min-1 and 0.0311 min-1, respectively, an order of magnitude higher than the individual components. Moreover, mineralization efficiencies reached 73 % for dinoseb and 69 % for methyl orange within 150 min, as verified by gas chromatography-mass spectrometry analysis of transformation products. Structural and morphological stability, after repeated photocatalytic cyclic runs, was confirmed through X-ray diffraction and microscopic analyses, underscoring the robust nature of the nanohybrid. Lastly, we designed a type-II mechanistic heterojunction system, accountable for enhanced photocatalytic performance over Co3O4/g-CN nanohybrid. Ultimately, the synergistic interaction within the heterojunction sets a benchmark for advancing sustainable water treatment technologies, offering a scalable and effective solution to environmental pollution.

zif -67衍生Co3O4/g-CN异质结受控热解对多水源双模式污染物的环境修复:现实世界的光催化应用
在这项研究中,通过控制热处理工艺合成了一种新型的沸石基吡唑啉骨架(ZIF-67)衍生的Co3O4和石墨氮化碳(g-CN)基纳米杂化异质结(Co3O4/g-CN),用于高效稳定的光催化环境修复。ZIF-67的热转化为高孔Co3O4,并保留了结构的完整性,再加上g-CN的战略性掺入,促进了异质结的形成,显著增强了载流子的分离和迁移率。在矿化水条件下,Co3O4/g-CN(1:5)纳米杂化物在75 min内对dinoseb的光催化降解效率为99%,对甲基橙的光催化降解效率为96%,表观速率常数分别为0.0389和0.0311 min-1,比单个组分高一个数量级。此外,转化产物的气相色谱-质谱分析证实,在150 min内,dinoseb和甲基橙的矿化效率分别达到73%和69%。经过多次光催化循环运行后,通过x射线衍射和显微镜分析证实了结构和形态的稳定性,强调了纳米杂化物的鲁棒性。最后,我们设计了一种ii型机制异质结体系,其光催化性能优于Co3O4/g-CN纳米杂化物。最终,异质结内部的协同作用为推进可持续水处理技术设定了基准,为环境污染提供了可扩展和有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信